

TRI-COUNTY REGIONAL ENERGY NETWORK

SAN LUIS OBISPO · SANTA BARBARA · VENTURA

Panel Detectives: Electrical Panel Assessments for Heat Pump Installers

Larry Waters – Electrify My Home April 8, 2025

Zoom Orientation

- Add an introduction in the chat. Be sure full name is displayed.
- Did you call in? Please share first and last name with us.
- Please mute upon joining
- Use the "Chat" to share questions or comments
- Under "Participant" select "Raise Hand" to share a question or comment verbally
- Session may be recorded and posted to 3C-REN's on-demand page
- Slides/recording are shared after most events

Tri-County Regional Energy Network

3C-REN is a collaboration between the tri-counties

Our programs reduce energy use for a more sustainable, equitable and economically vibrant Central Coast

Our free services are funded via the CPUC, bringing ratepayer dollars back to the region

Our Services

Incentives

3c-ren.org/for-residents 3c-ren.org/multifamily

3c-ren.org/commercial

Contractors can enroll at **3c-ren.org/contractors**

Training

3c-ren.org/events 3c-ren.org/building

ENERGY CODE CONNECT

3c-ren.org/code

View past trainings at **3c-ren.org/on-demand**

Technical Assistance

3c-ren.org/agriculture

ENERGY ASSURANCE SERVICES

3c-ren.org/assurance

3C-REN Achievements

Data from 2019-2023 for three programs

Who's This Dude?

1982 (UTI), with these tools
Certs along the way

2015 – onlyheat pumps

- 2020, foundedElectrify My Home

Larry Waters President, Electrify My Home

Electrify My Home – Electrification Pioneers

Our Mission:

To provide the **most efficient** costeffective electrification solutions to California homeowners, to practice **good stewardship** of the electrical panel, and to **train and influence** other contractors to do the same.

Agenda

- Introductions and Welcome
- Importance of the panel
- What's wrong with panel upgrades?
- Solutions to capacity challenges
- Real world examples

Importance of the Panel

Electrical Infrastructure = The Brain of Electrification

Heat Pumps are the Heart of Electrification

The Analogy, Tied Together

- Make sure you use the right heat pump for the right application
- Don't fill your brain (panel) with garbage

Are These Panels Full?

Important Concept #1: Power law is useful in calculating energy loads

Watts = amps X volts [W = AV]
Amps = watts/volts [A = W/V]
Volts = watts/amps [V = W/A]

Important Concept # 2

Electricity can kill you

⁹⁹ But don't fear the panel

Full Panel # No Remaining Capacity

100A Panel: 100 Amps x 240 Volts = 24,000 Watts

200A Panel: 200 Amps x 240 Volts = 48,000 Watts

¹⁵⁵ That's a LOT of capacity!

Count of Peak Power Levels in Amps across 22,442 CA Homes

Source: Home Energy Analytics (HEA), PG&E HomeIntel service single family user data

Source: Home Energy Analytics (HEA), Sacramento Municipal Utility District (SMUD) customer peak kW distribution

A Fully Electrified House Example – Max 6.56kW

15 Minute kW Readings, All Electric Home

 Built in 1959
 2-ton Mitsubishi inverter, 50-gal HPWH, elec range, elec resistance dryer

So...Are These Panels Full?

We Have Capacity...But Does It Meet Code?

- Practitioners must follow National Electric Code (NEC)
- Rules in place to prevent overheating of wires & bus bars
- For proper load calcs, you have 2 options:
 - NEC 220.87 Top-Down
 - Use metered or billing historic peak multiplied by 1.25
 - Add FULL nameplate rating of all new proposed appliances
 - NEC 220.83 (B) Bottom-Up
 - Nameplate loads x demand factors (aka coincident factors)
 - **#** 40% coincidence for some devices/circuits, 100% for others

220.83(B) Electrical Load Calculations

General Light and Plug Loads					Volt-Amps
Dwelling	2,350 sq. ft.	×	3 VA/sf	=	7,050
Kitchen Small Appliance Circuits	2 (min. 2)	×	1,500 VA each	=	3,000
Laundry (Washing Machine) Circuit	1 (min. 1)	×	1,500 VA each	=	1,500
Appliance Loads (nameplate value)	Volts		Amps		Volt-Amps
Built-in Microwave (not countertop model)	120	×	10	=	1,200
Dishwasher	120	×	15	=	1,800
Garbage Disposal	120	×	9.5	=	1,140
Refrigerator (on dedicated circuit)	120	×	5	=	600
Stove hood	120	×	1	=	120
NEW: Frigidaire gallery 30" front control induction range with air fry	240	×	42	=	10,080
NEW: Whirlpool 7.4 cu ft hybrid heat pump dryer	240	×	14	=	3,360
NEW: Rheem 15-amp 65-gallon heat pump water heater	240	×	12	=	2,880
General Loads Subtotal					32,730
First 8,000 VA @ 100%					8,000
Remaining VA @ 40%					9,892
General Loads Total					17,892
Other Loads (nameplate value)	Volts		Amps		Volt-Amps
NEW: Electric Vehicle Charging Load @ 125% (with circuit pausing)	240	×	0	=	0
Bathroom Heater #1 @ 100%	120	×	11	=	1,320
NEW: Mitsubishi 3-ton centrally ducted heat pump HVAC system @ 100%	240	×	17	=	4,080
Other Loads Total					5,400
Total Load (General + Other)					23,292 VA
Divide Load by 240 Volts					97 A
Rating of Existing Electrical Service					100 A
Panel Upgrade Required?					No

What's Wrong With Panel Upgrades?

Panel Upgrade Costs \$4,000 - \$9,500

+much more if trenching or other infrastructure needed

Complicated If Near A Gas Meter

Figure 2-19 Electric and Gas Meter Set Separation Dimensions and Clearances

Utility Infrastructure Must Support Worst Case Scenarios

Utility-Owned and Customer-Owned Electric Equipment

For Residential Service to Single-Family Dwellings and Duplexes

PG&E Infrastructure

Front-of-the-meter (FTM)

PG&E owns and is responsible for constructing, maintaining, and upgrading electrical infrastructure to the meter panel

Customer Infrastructure

Behind-the-meter (BTM)

Customer owns and is responsible for constructing, maintaining, and upgrading infrastructure from meter to the customer appliances Electric Service Upgrade Steps Planning phase

Application phase (3 days)

Load assessment or service design (30 days)

Contract & payment (70 days)

Construction & energization (42-84 days, \$Varies)

Solutions – Subs & Slim Breakers

What Loads to Consider – Breaker Spaces

Most homes converting from gas, will need:

- Heat Pump 2-6 spaces (20a-50a)
- Dryer 2 spaces (30a)
- Hot water 2 spaces (15a or 30a)
- Range 2 spaces (50a)
- EV charger 2 spaces (30-50a)

Panel is Full? "No Space" but Not at Capacity

Good example of panel that can be expanded by replacing wide 15 and 20's with 2 pole or quad

Utilize Subpanels to Gain Additional Space

30

If there is limited space on the main, but load is not exceeded, stretch with a quad to a subpanel
 Subpanels should not be fed with wire size less than #8

Solutions to "Full" Panels

Task: Add a HPWH Circuit

Option 1: Quad it out!

Solutions to "Full" Panels

Task: Add a HPWH Circuit

Option 2: Circuit Splitter!

Solutions to "Full" Panels

Task: Add a HPWH Circuit

• Option 3: Circuit Pausing!

Solutions to "Full" Panels

Task: Add a HPWH Circuit & a Couple More

Option 4: Add a Subpanel

Tip – add the neutral!

Solutions to "Full" Panels

Task: Add a HPWH Circuit (and much more)

Option 5: Smart Panel

Solutions to "Full" Panels

Task: Add a HPWH Circuit

Option 6: Use a 120v shared
 circuit unit!

FPE Stab-Lok

!! SAFETY !!

- ***** We talk a lot about reusing infrastructure but safety is always #1
- **†** It's better to **hold off** on certain electrification than to ignore a potential safety issue
- **†** Replace or plan replacement for known panels with safety issues
- Any evidence of burning or damage in the panel is a red flag

Solutions – Watt Diet

Tom Kabat

Watt Dieting Examples

Category	Dryer	Dishwasher	Heat Pump	HP Water Heater	SUM
Standard	5,280 W	1,400 W	9,220 W (w/ heat strips)	4,500 W (30A)	20,400 W
Efficient	2,200 W	1,100 W	3,500 W	2,200 W (15A)	9,000 W

120 Volt Solutions

Wash + Dry in 1 machine

Examples From The Field

Example 1 (PRE) – Oakland, CA

- **† Existing Panel:** 100 Amp
- **† Staring Point:** All gas
- **Goals:** Remodel, full electrification
- The Challenge: 100A panel over gas meter, breakers mislabeled, multiple remodels resulted in unexpected loads

Example 1 (POST) – Oakland, CA

- Post Panel: No change! Customer may plan an upgrade when it's time for the EV.
- Solution: Simple Switch b/w Range & Heat Pump Subpanel
- Scope: 25A Heat Pump, 30A Heat Pump Water Heater, Induction Range

Example 2 (PRE) – Petaluma, CA

- **† House:** 1870 Victorian
- **† Existing Panel:** 125 Amp
- **† Staring Point:** Gas Furnace, water heater
- **Goals:** Multizone heat pump, water heater, insulation & air sealing
- **†** The Challenge: 125A capacity panel

Example 2 (POST) – Petaluma, CA

- **Post Panel:** No change, electrifying on 125A!
- **Solution:** Plug-in HPWH
- Scope: Multizone inverter heat pump, 120v heat pump water heater, induction range

120v HPWH during installation

Example 3 (PRE) – Vacaville, CA

- **Fixisting Panel:** 100 Amp Zinsco
- Starting Point: Gas furnace, water heater, dryer, range
- **Goals:** Full electrification, envelope, solar+storage
- The Challenge: Gaining sufficient capacity for final electrification appliance and future EV. Older panel.

Example 3 (POST) – Vacaville, CA

- **Post Panel:** 125A with SPAN panel
- **† Solution:** Low-amp appliances, span panel
- **Scope**: 20A Heat Pump, 120v HPWH

Example 4 (PRE) – Berkeley, CA

- **† Existing Panel:** 125 Amp
- **† Starting Point:** Gas furnace, water heater, dryer, range
- **† Goals:** Lower bills, full electrification
- The Challenge: Costs, physical space, and capacity hit of running electrical to all new electric appliances.

Example 4 (POST) – Berkeley, CA

- **Post Panel:** Panel left in place
- Solution: Circuit splitter between dryer & water heater, low-amp heat pump
- Scope: 20A Heat Pump, 240v HPWH, attic air sealing and insulation

BONUS Example 5 (PRE) – Woodland, CA

- **† Existing Panel:** 100 Amp
- Starting Point: Gas furnace, water heater, range, Zinsco panel
- **† Goals:** Full electrification, EV Charger
- **†** The Challenge: Costs, safety of panel, capacity limitations

BONUS Example 5 (POST) – Woodland, CA

- **Post Panel:** Panel upgraded but same capacity
- Solution: Circuit splitter between induction range & EV charger
- Scope: 20A Heat Pump, 240v HPWH, induction range, Emporia EV charger, attic air sealing and insulation

Example 6 (PRE) – Davis, CA

- **Existing Panel:** 100 Amps, Recessed, Feed Wire Capable of 125A
- Staring Point: All gas except dryer, small kiln
- **† Goals:** Full electrification + insulation
- The Challenge: Near gas meter, limited physical breaker space, additional capacity needed to meet electrical load calc, customer wants fast charging for future EV

Example 6 (POST) – Davis, CA

- **New Panel:** 125 Amp SPAN Smart Panel, Feeding from Main
- Scope: 20A Mitsubishi, 120v RUUD HPWH, induction range
- Thinking Ahead: Customer wants fast charging for future EV

Case Study – Davis, CA

TECH Electrification Training Next Up: 4/14-4/16, Bakersfield, CA

1.1

Questions? Stay in Touch!

Larry Waters 707-840-3411 www.electrifymyhome.com info@electrifymyhome.com

Closing

Continuing Education Units Available

Contact julianna@3c-ren.org for AIA LUs and ICC CEUs

Coming to Your Inbox Soon!

Slides, Recording, & Survey – Please Take It and Help Us Out!

Upcoming Electrify My Home Courses:

- Electrification Products for the Central Coast Climate (5/6)
- Optimizing Heat Pump Zoning for Maximum Comfort and Efficiency (6/17)

https://www.3c-ren.org/calendar-of-events-and-trainings/

Any phone numbers who joined? Please share your name!

Thank you!

More info: **3c-ren.org** Questions: **info@3c-ren.org** Email updates: **3c-ren.org/newsletter**

TRI-COUNTY REGIONAL ENERGY NETWORK SAN LUIS OBISPO • SANTA BARBARA • VENTURA

