

Recovery Ventilators: 2022 Energy Code Energy Savings and Compliance Credit

Nick Brown
Build Smart Group

March 5, 2025

RECOVERY VENTILATORS

ENERGY SAVINGS AND COMPLIANCE CREDIT IN THE ENERGY CODE

NICK BROWN

President
Build Smart Group
Long Beach

OUR TIME TOGETHER

Recovery Ventilators

IAQ appliances and HVAC energy savers in one

Energy Savings

How much energy do RVs save in various California climate zones?

Mechanical Ventilation

Why the energy code requires it and how much is needed

Compliance Credit

How much do RVs help comply with Title 24?

How RVs Work

Balanced ventilation with heat recovery

Tips for Specifying RVs

Making sure the right RV is installed right

BASED ON RESEARCH FOR:

RECOVERY VENTILATORS: IMPACT ON MODELED ENERGY USE, ENERGY CODE COMPLIANCE, GREENHOUSE GAS EMISSIONS, AND PEAK ELECTRICITY DEMAND IN CALIFORNIA HOMES AND MULTIFAMILY BUILDINGS

February 16, 2022

By Nick Brown, Build Smart Group & Luke Morton, Morton Green Building Services

slido

What does "Heat Recovery Ventilators" make you think?

RECOVERY VENTILATORS

Let You Live Better, Sleep Better, and Work Better, and Your HVAC Run Better

Recovery Ventilators 2022

WHY RECOVERY VENTILATORS?

Indoor Air Quality

- RVs provide continuous ventilation for indoor spaces to dilute pollutants and enhance IAQ
- They ventilate more effectively than spot ventilation fans such as bathroom exhaust
- They keep neutral pressure in the home, which improves control of IAQ

Energy Savings

- RVs temper the incoming fresh air using the outgoing stale air
- This reduces the burden on the space conditioning system

Recovery Ventilators 2022

WHY RECOVERY VENTILATORS?

Energy Code Compliance

- RVs are one of the most powerful compliance credits available because of the energy savings they can generate
- By using RVs in your energy models, you can compensate for features that are not up to code, add extra glazing, etc.

Health

- RVs allow you to boost ventilation in your home when needed, when the house is full or germs are going around
- By getting fresh air behind closed bedroom doors and into home offices, you perform better

slido

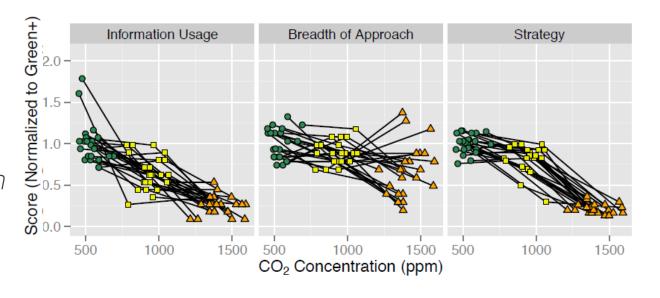
What is your experience level with RVs?

MECHANICAL VENTILATION

Why we need it, How to do it, How much?

Recovery Ventilators 2022

INDOOR AIR QUALITY


- Source Control
- Dilution of Pollutants
 - Mechanical Ventilation
 - Spot sources
 - Bathrooms
 - Kitchens
 - Whole home

- Mechanical Ventilation
 - ASHRAE 62.1 (nonres) & 62.2 (residential)
 - Title 24 adopts ASHRAE
 62.2 for residential standards

INDOOR AIR QUALITY

- "Increasing ventilation rates will reduce respiratory illness and associated sick leave, reduce sick building symptoms, and increase productivity"
 - ~ California Energy Commission
- "Reduced ventilation brought down people's ability to think and perform higher order analysis by 60%"

~ Harvard study

Allen, MacNaughton, et al, "Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, ..." Environmental Health Perspectives, October 2015

Range Hoods

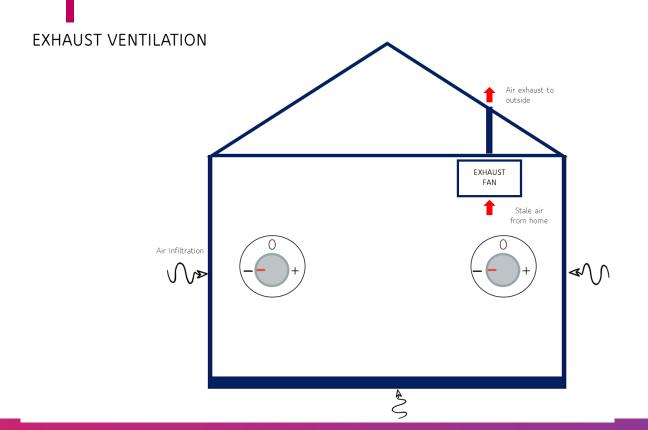
New Standards Introduced for 2022

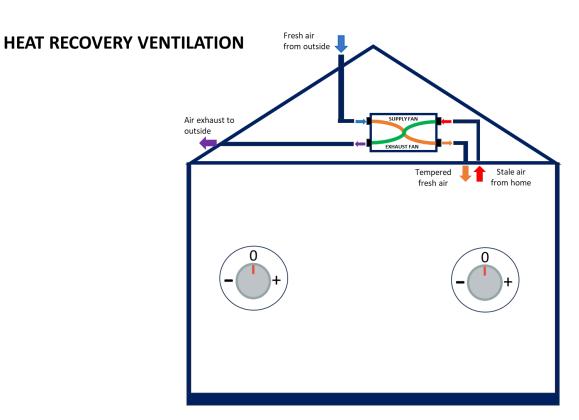
HERS Verification Required

- → Must meet requirements of Table 150.0-G by EITHER:

 - → Air flow (cfm)
- → Higher air flow and CE required for gas ranges.
- → In all cases, max 3.0 sones applies via ASHRAE 62.2, Section 7.2

Dwelling Unit Floor Area (ft²)	Hood Over Electric Range	Hood Over Natural Gas Range		
>1500	50% CE or 110 cfm	70% CE or 180 cfm		
>1000 - 1500	50% CE or 110 cfm	80% CE or 250 cfm		
750 - 1000	55% CE or 130 cfm	85% CE or 280 cfm		
<750	65% CE or 160 cfm	85% CE or 280 cfm		


HOW TO VENTILATE?


All new homes must have continuously operating mechanical ventilation systems (or equivalent intermittent)

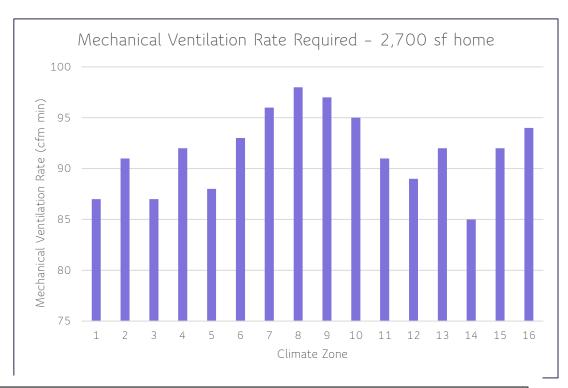
- Exhaust only
- Supply only
- Balanced

WHAT KIND OF VENTILATION?

HOW MUCH VENTILATION?

2022 Energy Code requires minimum whole house ventilation rate:

Total Required Ventilation Rate (Equation 150.0-B)


$$Q_{tot} = 0.03 \times A_{floor} + 7.5 \times (N_{br} + 1)$$

 Q_{tot} = Total required ventilation rate, cfm

 A_{floor} = Dwelling-unit floor area, ft^2

 N_{br} = Number of bedrooms (not to be less than 1)

Note that the Fan airflow is determined using Q_{tot} and several equations to represent air infiltration.

INDOOR AIR QUALITY (IAQ) FANS								
01	02	03	04	05	06	07	08	09
Dwelling Unit	Airflow (CFM)	Fan Efficacy (W/CFM)	IAQ Fan Type	Includes Heat/Energy Recovery?	IAQ Recovery Effectiveness - SRE	Includes Fault Indicator Display?	HERS Verification	Status
SFam IAQVentRpt	84	0.35	Exhaust	No	n/a	No	Yes	

VENTILATION AFTER COVID-19

- Air flow rates often set higher than code minimum
- Filtering return air more important
- Air cleaners, UV lights gained traction

Sci Rep. 2019; 9: 2185.

Published online 2019 Feb 18. doi: 10.1038/s41598-019-38825-y

PMCID: PMC6379436

PMID: 30778136

Setting ventilation to code requirement = Vaccinating 50-60% against flu

¹Modelling and Economics Unit, National Infection Service, Public Health England, London, UK

²MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College School of Public Health, London, UK

³Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, USA

⁴Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL),

Lausanne, Switzerland

Marcel Salathé, Email: marcel.salathe@epfl.ch.

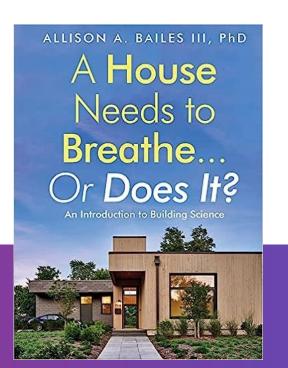
Corresponding author.

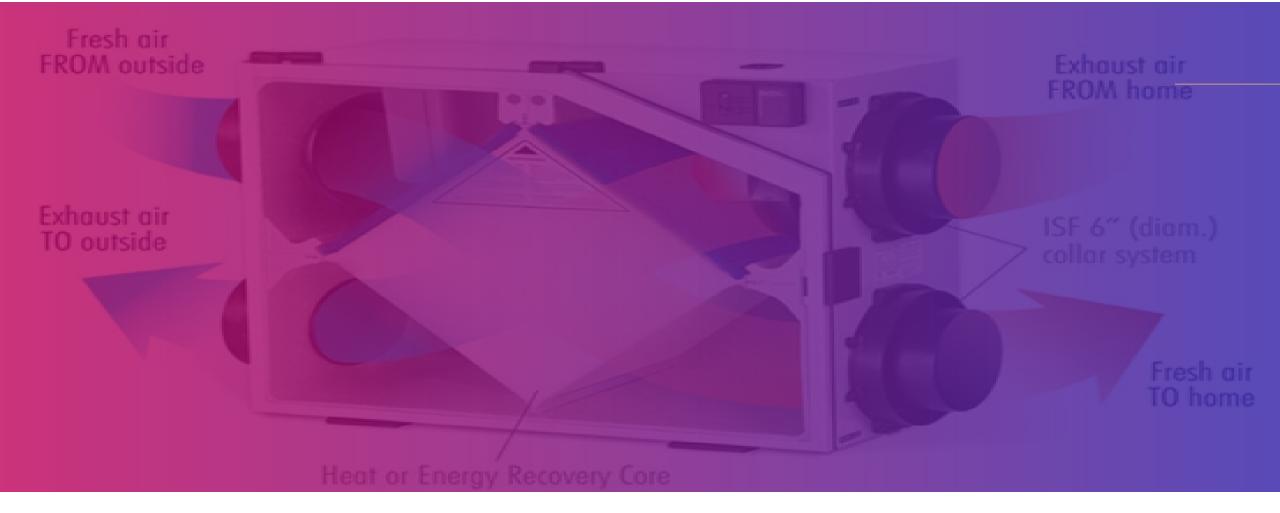
#Contributed equally.

Received 2018 Feb 23; Accepted 2018 Dec 19.

VENTILATION AFTER COVID-19

- "You building designers have a bigger impact on health than we clinicians"
- "Darn architects put wood on the walls [of our hospital] and it was peeling off the walls because it was dry in there. We added humidity to keep the wood trims on the wall and brought down infection rates by accident."

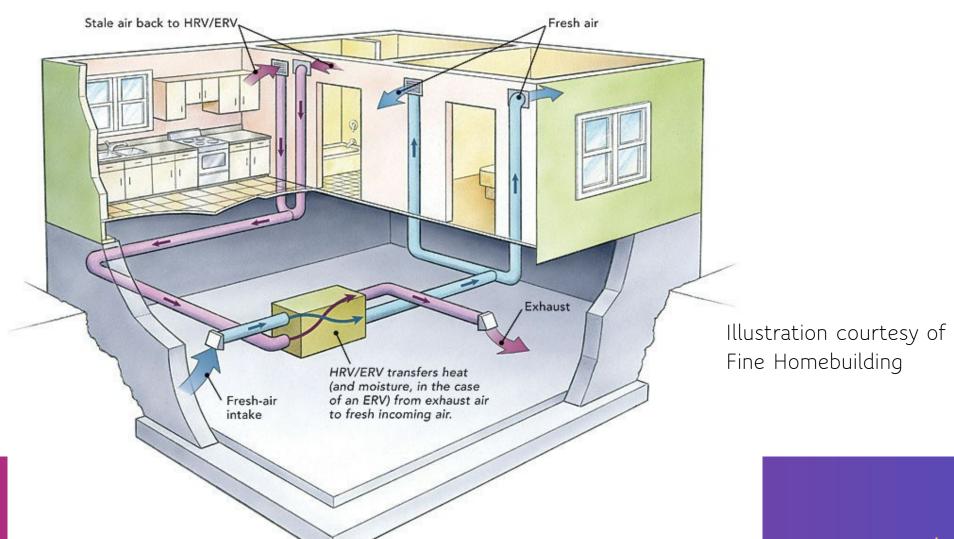




TO "E" OR TO "H"; THAT IS THE QUESTION

- ERVs have membranes that temper the incoming air using the humidity of the exhaust air
- HRVs do not swap moisture (just heat)
- Title 24 doesn't care about E vs H when it comes to RVs ...
- But occupants might care
 Mild climates: HRVs better
 Other climates: ERVs better

- "The choice between an ERV and an HRV should land on ERV most of the time."
- "it's only in mild climates where it doesn't get too cold, humid, or dry where HRVs make sense..."



HOW RVs WORK

Fresh filtered supply air + Exhaust stale air + Heat recovery

HOW RECOVERY VENTILATORS WORK

HOW RECOVERY VENTILATORS WORK

- Fresh air brought in from known location & filtered
 - Supplied in ducts to bedrooms and living areas
- Stale air removed from areas with moisture
 - typically kitchen and bathrooms

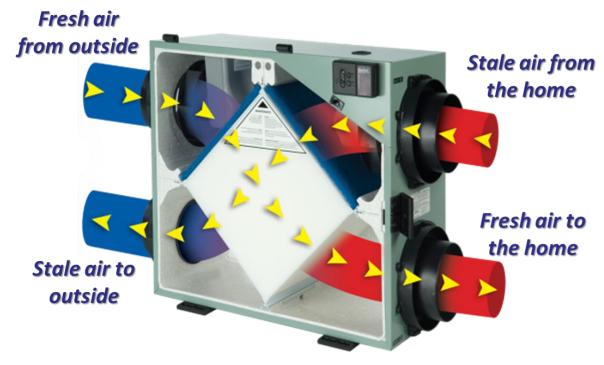
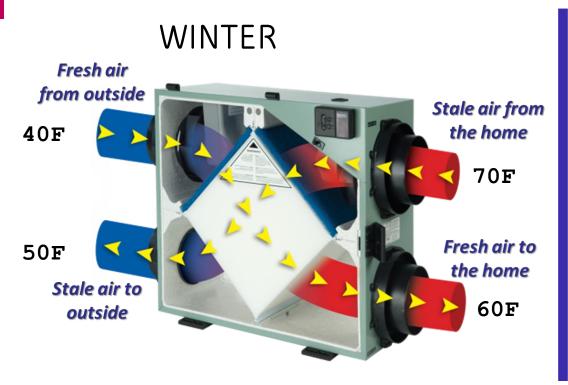
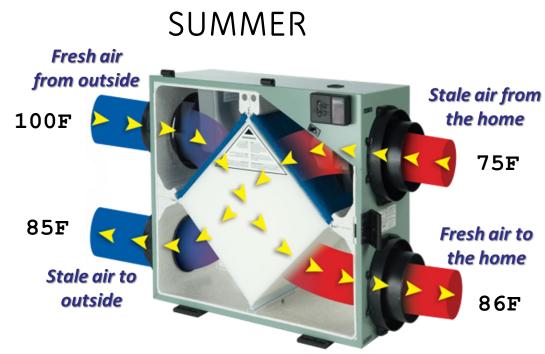
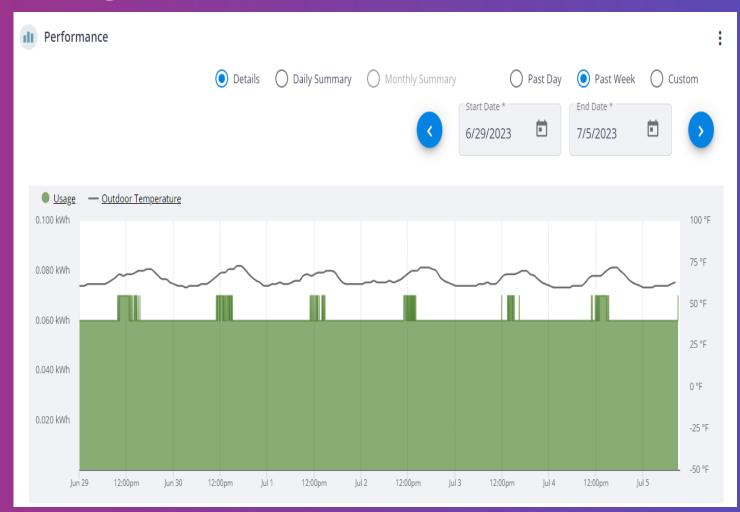




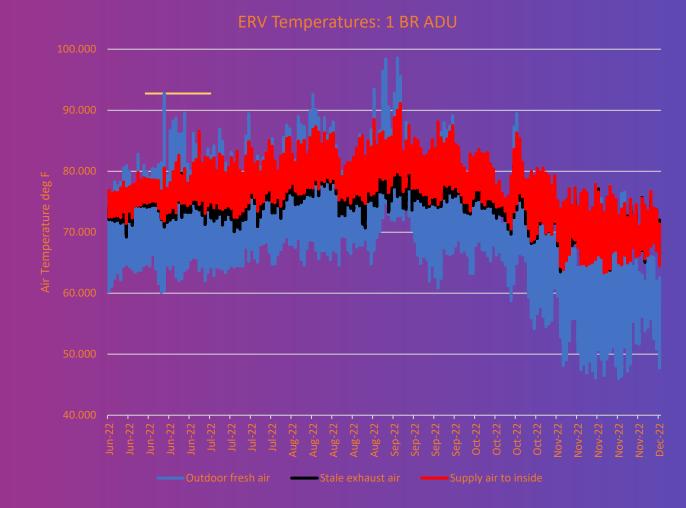
Illustration courtesy of Field Controls

THE HEAT RECOVERY PART

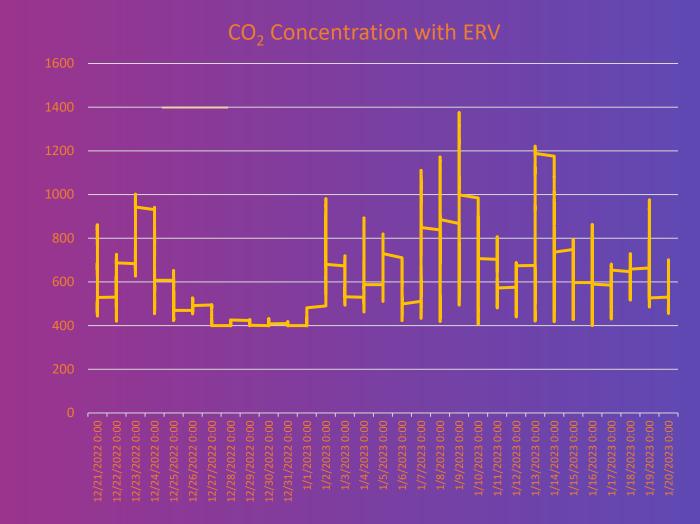
MY RECOVERY VENTILATORS



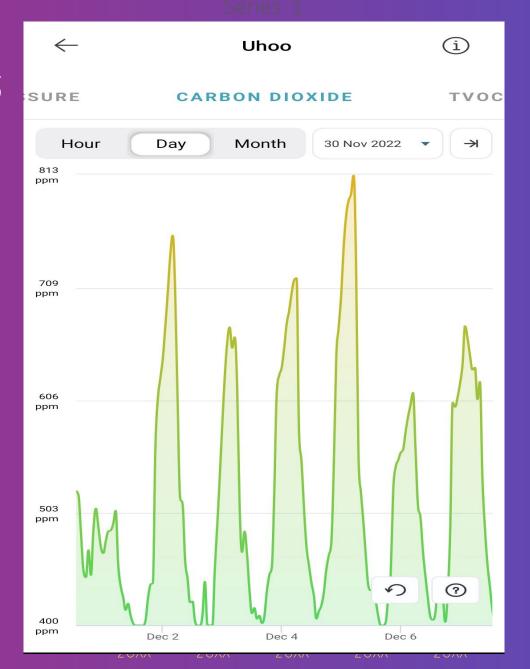
Recovery Ventilators 2022


ADU ERV

- 60 Watts continuous
- 60 cfm
- Boosts up to 70 Watts when humidity spikes


ADU ERV

- Supply air to space tempered in ERV
- Winter outdoor temps into 40s while supply air in mid-60s
- Summer outdoor temps to 100 while supply air in high-80s

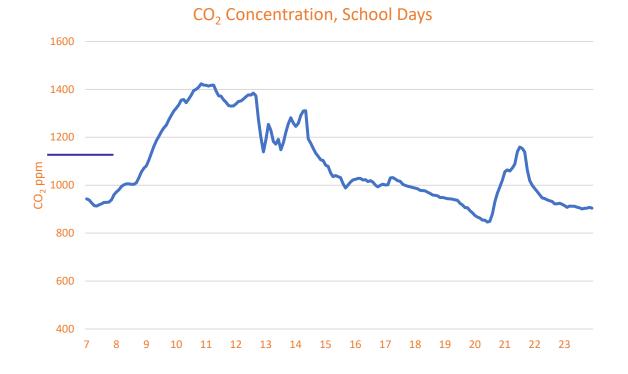

ADU ERV

- CO₂ maintained under 800 in Winter months with windows closed
- Spikes up to 1,400 cfm occur with extra people in space – hence the need for Boost mode

Fresh Air Behind Closed Bedroom Doors

CO₂ in bedroom spiked to 1,000-1,200 cfm during night time sleep before HRV connected With HRV, CO₂ spikes limited to 700-800 cfm

IAQ IMPACT


HOW MUCH CO₂ IS TOO MUCH?

- Earth is at 424 ppm
- Harvard study used:
 950 ppm = typical indoor levels
 1,400 ppm = extreme
- CBRE used 800 ppm for their buildings
- Title 24 uses outdoor + 600 ppm for demand-control ventilation

COVID19 CLASSROOM CASE STUDY

- CO₂ steadily climbed to 1,400 ppm with 3 students on hot September day with windows closed
- HRV at 30 cfm into classroom kept CO₂ under 1,000 ppm

Recovery Ventilators 2022

HOW MUCH ENERGY CAN THEY SAVE?

HVAC ENERGY SAVINGS

- Typical RVs: savings of 11-15% in CZ 1-5 vs exhaust only ventilation
- Best-in-Class RVs: 21-31% HVAC energy savings in CZ 1-5
- CZ 10-14 & 16 also show savings
- CZ 6-9 & 15 less well suited for energy savings with HRVs

The Math

TYPICAL RV

80 cfm exhaust fan: 28 Watts

80 cfm typical RV: ~56 watts

Annual extra ventilation energy = 245 kWh

Cooling energy savings, CZ5 = 0

Heating energy savings, CZ5 = 290 kWh

BEST-IN-CLASS RV

80 cfm B-I-C RV: ~40 Watts

Annual extra ventilation energy = 105 kWh

Cooling energy savings, CZ5 = 0

Heating energy savings, cZ5 = 395 kWh

HVAC ENERGY SAVINGS - TYPICAL RV

		HVAC Savings	HVAC Savings		Pct savings	Cooling Savings	Heating Savings	Ventilation
Climate Zone	HVAC Savings kWh	therms	mmbtu		HVAC mmbtu	kWh	kWh	Savings kWh
1	301.8	-		1.0	6.9%	-	482.6	(180.6)
2	76.2	-		0.3	3.0%	15.0	256.2	(195.4)
3	21.7	-		0.1	1.5%	-	218.3	(195.4)
4	(17.9)	-		(0.1)	-1.2%	2.7	179.9	(199.0)
5	45.1	-		0.2	3.0%	-	235.2	(189.0)
6	(115.5)	-		(0.4)	-16.3%	5.3	95.7	(215.3)
7	(138.9)	-		(0.5)	-24.5%	(2.3)	76.8	(211.5)
8	(166.7)	-		(0.6)	-16.7%	(15.6)	69.4	(218.4)
9	(126.8)	-		(0.4)	-10.8%	(6.1)	90.3	(209.4)
10	(97.1)	-		(0.3)	-5.8%	(12.1)	120.8	(204.2)
11	44.4	-		0.2	1.4%	12.9	231.5	(199.0)
12	6.5	-		0.0	0.3%	2.2	203.0	(197.5)
13	(17.4)	-		(0.1)	-0.6%	24.0	163.7	(204.2)
14	31.0	-		0.1	1.0%	4.2	218.2	(190.4)
15	(103.5)	-		(0.4)	-2.3%	71.1	26.3	(199.0)
16	173.3	-		0.6	3.8%	(1.1)	376.1	(200.5)

Table 5: Impact of Changing Ventilation from Exhaust to HRV in 1-story Single Family Home with Heat Pump

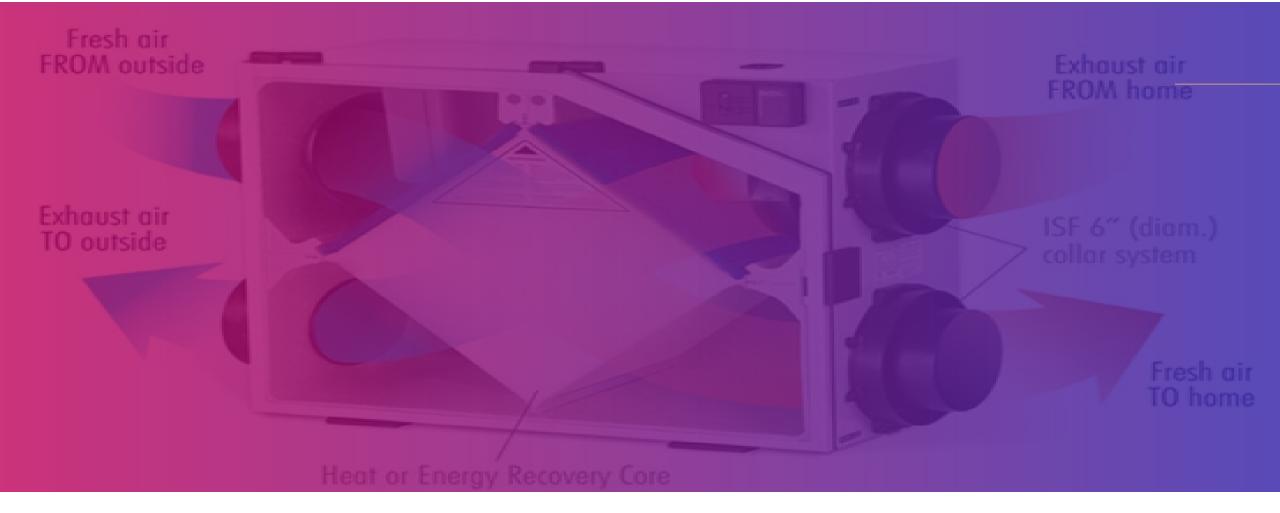
HVAC ENERGY SAVINGS - B-I-C RV

Table 5: Energy impact of Best-in-class HRV in 2100 sq ft SFH with HP

	HVAC Savings	HVAC Savings	HVAC Savings	Pct savings	Cooling Savings	Heating Savings	Ventilation Savings
Climate Zone	kWh	therms	mmbtu	HVAC mmbtu	kWh	kWh	kWh
1	720.3	-	2.5	16.6%	-	810.1	(89.8)
2	394.3	-	1.3	15.7%	17.1	478.3	(101.0)
3	259.7	-	0.9	17.4%	-	360.7	(101.0)
4	200.8	-	0.7	13.9%	4.7	299.9	(103.7)
5	299.6	-	1.0	19.9%	-	395.7	(96.1)
6	42.2	-	0.1	5.7%	2.2	156.1	(116.2)
7	(5.2)	-	(0.0)	-1.5%	(10.0)	118.1	(113.3)
8	(27.7)	-	(0.1)	-3.1%	(18.1)	109.0	(118.6)
9	38.7	-	0.1	3.1%	(2.2)	152.5	(111.6)
10	101.0	-	0.3	5.9%	(1.2)	209.9	(107.7)
11	341.2	-	1.2	10.6%	47.9	397.0	(103.7)
12	267.0	-	0.9	9.2%	12.3	357.3	(102.6)
13	249.8	-	0.8	8.1%	64.6	292.9	(107.7)
14	337.2	-	1.1	10.6%	32.4	402.1	(97.2)
15	110.4	-	0.4	2.4%	180.6	33.6	(103.7)
16	554.4	-	1.9	12.2%	(4.8)	664.1	(104.9)

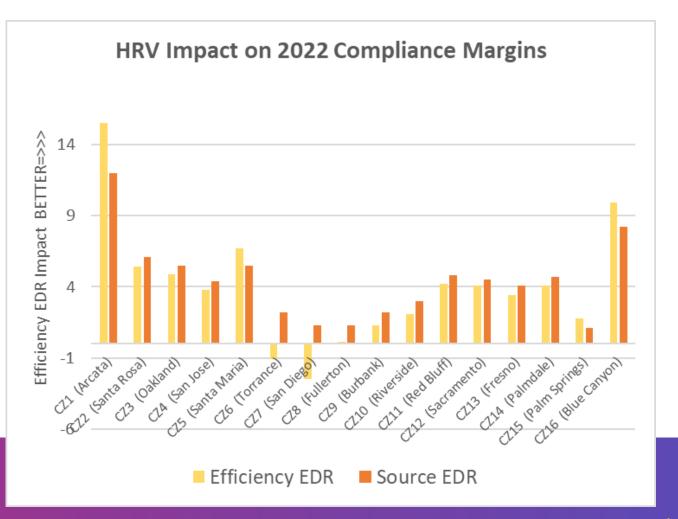
BEST-IN-CLASS RVs CAN DO MORE

- Ventilation Cooling via Bypass mode
 - Small Planet Supply study found 50 kWh cooling savings possible (Zehnder)
- Boost mode when added air flow needed
- Humidistat drives boost after a shower
- Demand control ventilation via CO₂ sensors



slido

What is the trade-off we make when using RVs?



CODE COMPLIANCE & RVs

Miracle Workers in a White Box

RVs ARE POWERFUL IN COMPLIANCE

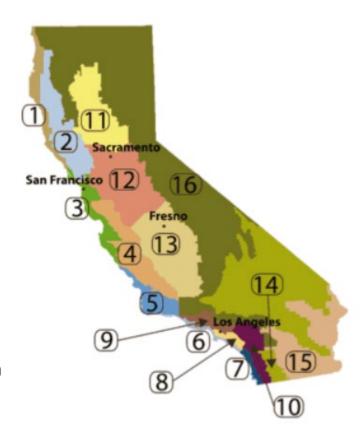
- Typical RVs:
 Efficiency EDR Impact ~10%
 Highest in CZ 1,2,3,5,16
- B-I-C RVs: Efficiency EDR Impact ~14%

WHAT ABOUT MULTIFAMILY?

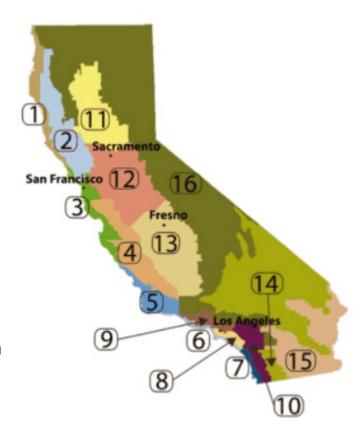
HRV Impact on Multifamily 2022 Compliance Margins

Multifamily is Different

Title 24 requires balanced ventilation in multifamily units

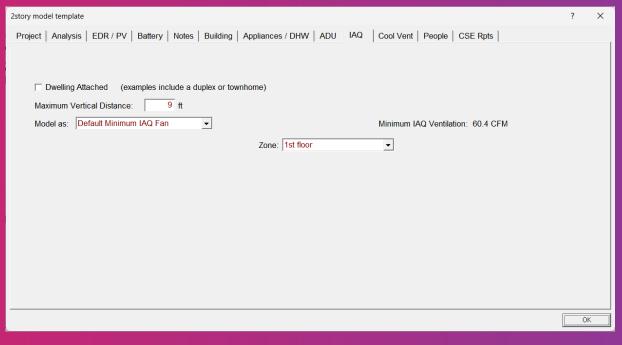

- Unless builder does blower door testing on all units
 Therefore, no added fan energy to upgrade to RV
- Energy savings larger
- Title 24 compliance impact larger than single family

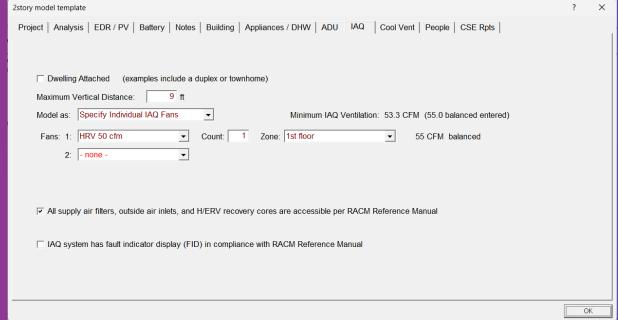
When Are RVs Required?


§170.2(c)3Biv (Prescriptive)

- RVs are NEVER mandatory in Residential buildings
- But they are Prescriptive Standard in half the state for multifamily
 - Multifamily buildings have two choices for IAQ ventilation:
 - 1) Balanced ventilation in all dwelling units; OR
 - 2) Any ventilation method and blower door testing of all units (<0.3 cfm per sqft envelope)
 - When balanced ventilation used in MF, RVs are prescriptive standard in CZ 1,2,11-16
 - Min 67% SRE @ 32F and max 0.6 W/cfm
 - If projects in those CZs don't use RVs, they take a stiff compliance penalty (~10%)
- Separate prescriptive standards for balanced ventilation systems serving multiple units in HRMF buildings

Will the 2025 Code Push RVs?

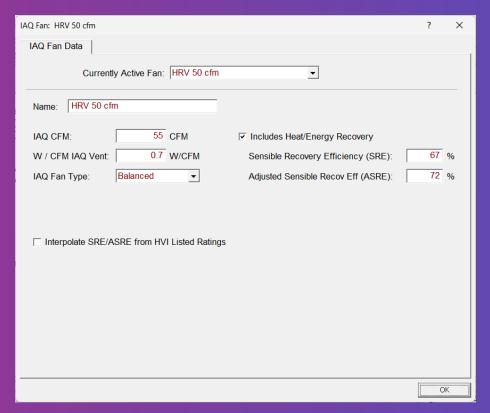

- RVs are still not mandatory in multifamily buildings
- But MF buildings must use balanced or supply ventilation (not exhaust!)
 - And perform blower door compartmentalization test
- they are Prescriptive Standard in half the state for multifamily
 - RVs are prescriptive standard in CZ 1,2, 4, 11-14, 16
 - Min 67% SRE @ 32F and max 0.6 W/cfm
 - Equipped with Fault Indication Display (FID)
 - If projects in those CZs don't use RVs, they take a stiff compliance penalty (~10%)
- Separate prescriptive standards for balanced ventilation systems serving multiple units in HRMF buildings


Ventilation 2022 48

MODELING RVs

Default exhaust ventilation

RV added


MODELING RVs

What Happens When I add an RV?

- Proposed Design:
 - Airflow you entered
 - Watts per CFM you entered
 - Outdoor air cfm at temperature calculated using Recovery Efficiency you entered
- Standard Design***
 - Airflow you entered up to 125% of code minimum
 - Watts per CFM is default (0.70)
 - Outdoor air cfm at actual outdoor temperatures (no heat recovery)

*** except in MF CZs where prescriptive standard, an HRV is standard design

Defining the RV

RV CASE STUDY

6 new duplexes
Los Angeles, CZ 8
Original compliance models had:

- VCHP credit for ductless minisplit heat pump
- Condensing gas tankless WH uef .95 Builder missed those features, instead used:
- Central ducted heat pump
- Standard gas tankless WH uef .81

HOW RVs CAN SAVE A PROJECT

Nick Brown <nick@buildsmartgroup.com>

Jun 22, 2023, 2:02 PM

I have done the what-ifs on 36th Street and have two options for you to get these to comply with Title 24. If you remember, we specified the VCHP credit for HVAC and a condensing gas tankless with uef=0.95 for water heating but they did a ducted standard heat pump (16 SEER, 9 HSPF) and standard gas tankless (uef=0.81). As a result, we were tight on compliance with margins of 0.1 and 0.2 on Units 1-4 (5&6 were not as tight), so we have to compensate for the extra energy use. Here are two options:

- 1) Add rigid foam to walls R-4 and above roof deck R-6 or more
- 2) Add a heat recovery ventilator. You will need to find space for the 4" ducts to get the air around the house and inlet and outlet through the walls somewhere, or we may be able to make do with two through-the-wall units that attach to the wall and don't need ducts

What do you think the client's preference would be? I've modeled these options on Units 1&2 and they seem like they could do the trick. I assume if it works on 1&2, it will work on units 3-6 as well.

Nick

As-Built

With HRV 72% SRE, 0.6 W/cfm

36th St. Duplexes Building A Unit 1 asbuilt v2						
Compliance Summary	CO2 Emissions	Energy Design Rating	Energy Use Details	CO2 Details		

	Energy Design	Ratings:	Compliance Margins:		
	Efficiency¹ (EDR)	Total² (EDR)	Efficiency ¹ (EDR)	Total ² (EDR)	
Standard Design	45.9	20.7			
Proposed Design	47.1	21.9	-1.2	-1.2	

Result³: DOES NOT COMPLY

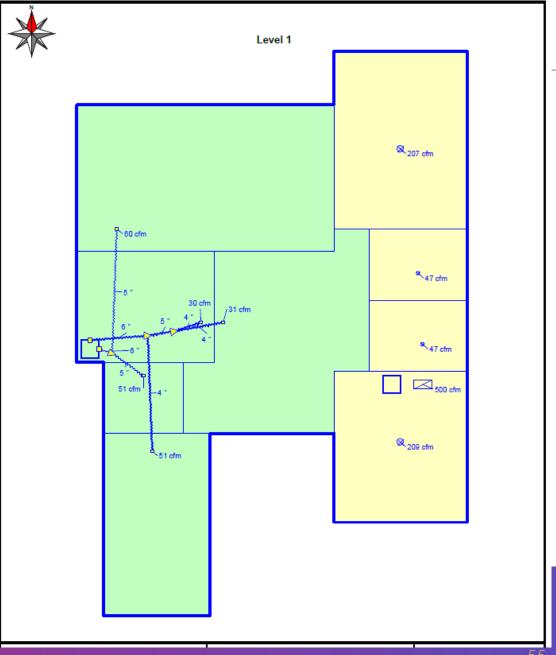
- ¹ Efficiency measures include improvements like a better building envelope and more efficient equipment
- ² Total EDR includes efficiency, photovoltaics and batteries
- ³ Building complies when all efficiency and total margins are greater than or equal to zero Standard Design PV Capacity: 2.78 kWdc

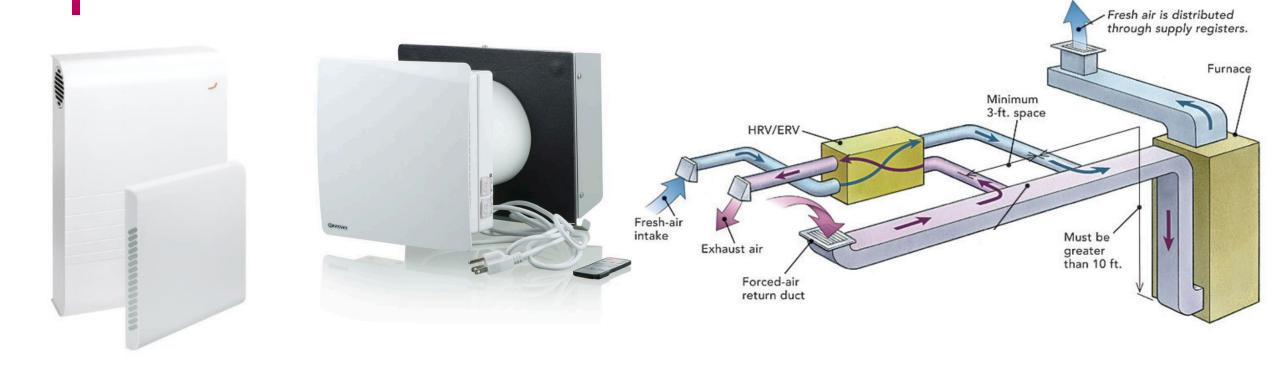
PV System resized to 2.78 kWdc (a factor of 1.390) to achieve 'Standard Design PV' PV scaling

6th St. Duplexes Building A Unit 1 asbuilt HRV						
Compliance Summary	CO2 Emissions	Energy De	esign Rating	Energy Use Details	CO2 Details	
	Energy Design Ratings: Compliance Margins:			Margins:		
	Efficiency¹ (EDR)	Total ² (EDR)	Efficiency ¹ (EDR)	Total² (EDR)		
Standard Design	47.1	21.4				
Proposed Design	46.8	21.2	0.3	0.2		
Poo	cults. COMPLIES		1			

Result³: COMPLIES
(not current)

- ¹ Efficiency measures include improvements like a better building envelope and more efficient equipment
- ² Total EDR includes efficiency, photovoltaics and batteries
- ³ Building complies when all efficiency and total margins are greater than or equal to zero Standard Design PV Capacity: 2.89 kWdc


PV System resized to 2.89 kWdc (a factor of 1.444) to achieve 'Standard Design PV' PV scaling

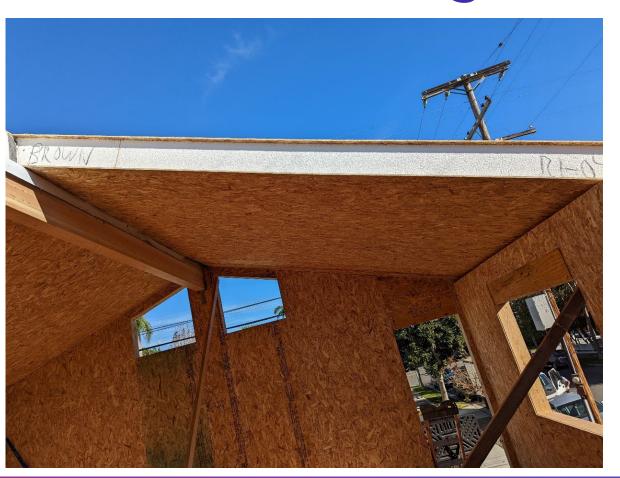

SPECIFYING & INSTALLING RVs

KEY QUESTIONS

- Location of unit
- Duct routes
- CFM by room
- Supply & exhaust registers
- Envelope penetrations for ducts to outside
- Occupant controls

OTHER RV CONFIGURATIONS

DISTRIBUTION SYSTEMS

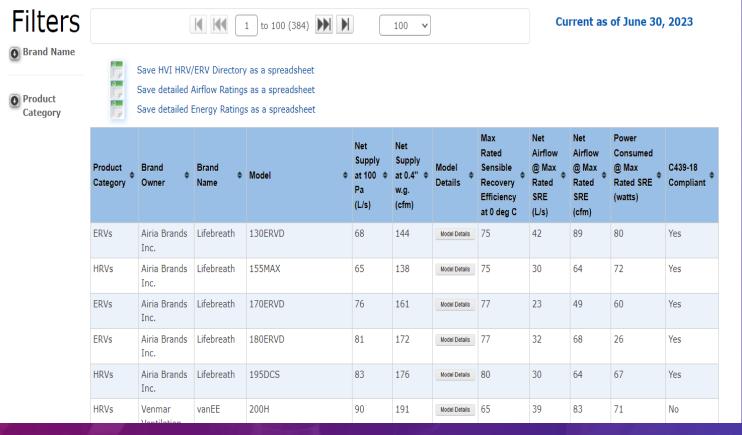


Photos Courtesy of Scott Kelly, https://www.highperformance.build/

RVs & Ductless Mini Allow for Vaulting

- RV replaces bathroom exhaust fan
 - Only requires 20 cfm in bathroom if continuous
- Ductless minisplit doesn't need an attic or closet location
- Ducted minisplit can fit in 16" soffit as an alternative to ductless

HVI Directory


The best place to find your RV performance statistics:

- CFM
- Watts
- Sensible Recovery Effectiveness (SRE)
- Apparent Sensible Recovery Effectiveness (ASRE)

Section III - HRV/ERV Directory Listing

HVI Publication 911: Certified Home Ventilating Products Directory ©

Section III - HRV/ERV Directory Listing

slido

What are your take-aways on RVs?

RVs ALLOW YOU TO BE YOUR MOST PRODUCTIVE SELVES

March 5, 2025

THANK YOU!

nick@buildsmartgroup.com

Questions about Title 24?

3C-REN offers a free Code Coach Service

Online: **3c-ren.org/code**

805.781.1201

Call:

Energy Code Coaches are local experts who can help answer your Title 24 Part 6 or Part 11 questions.

They can provide code citations and offer advice for your res or non-res projects.

Thank you!

More info: 3c-ren.org

Questions: info@3c-ren.org

Email updates: 3c-ren.org/newsletter

TRI-COUNTY REGIONAL ENERGY NETWORK
SAN LUIS OBISPO · SANTA BARBARA · VENTURA

Closing

Continuing Education Units Available

Contact nnewman@countyofsb.org for AIA HSW & ICC LUs

Coming to Your Inbox Soon!

Slides, Recording, & Survey – Please Take It and Help Us Out!

Upcoming Courses:

- Nail the Sale: Getting Past Heat Pump Objections (3/11)
- Nonresidential Energy Code Implementation Series (3/12)
- Diagnosing Heating and Cooling Comfort Problems in Homes (3/18)
- Batteries: Options and Implementation for a Building's Energy Storage System (3/20)

Any phone numbers who joined? Please share your name!

