

Greenhouse Optimization - Aligning Your Systems with Your Surroundings

In partnership with

TRI-COUNTY REGIONAL ENERGY NETWORK

SAN LUIS OBISPO • SANTA BARBARA • VENTURA

December 2, 2021

Agenda

About RII	1:30 pm PT
Introductions & Purpose	1:35 pm
Controls & Automation in Greenhouses	1:45 pm
Building Envelope & Shading Devices	2:00 pm
Greenhouse Lighting Controls & Automation	2:20 pm
Environmental Controls Avoiding Microclimates	2:40 pm
Efficiency Program Examples	3:00 pm
Q&A	3:15 pm

ABOUT US

About RII

Objective, data-driven non-profit

Founded 2016 in Portland, Oregon

Expertise in climate policy, utility programs, green building certification, sustainable business, construction & indoor cultivation

In 2020, received 3-year grant from USDA to develop KPIs, standards & building rating system for CEA

What We Do / Our Mission

We measure, verify & celebrate the world's most efficient agricultural ideas.

Efficiency & Productivity

- Key Performance Indicators
- Benchmarks
- Baselines

Verify

Best Practices & Standards

- Training
- Policies
- Utility Programs

Leadership Recognition

- Verification
- Case Studies
- Certification

RESOURCE INNOVATION

Our Network

EDUCATION and advocacy about best practices for growers

ABOUT RII

Technical Advisory Council

Multi-disciplinary body who aggregates knowledge to support producers and other stakeholders with objective and peer-reviewed data and curriculum on benchmarking resource efficiency

- **Guides** development of standards
- Shapes tools and resources to support best practices
- Advocates for informed policies, incentives and regulations

HVAC - Lighting - Utility - Water
Policy - Data - Controls - Emissions
Facility Design & Construction

PowerScore Benchmarking

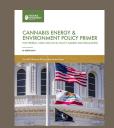
Specialized Key Performance Indicators

- Performance Snapshots
 - Year-over-year energy, water, and emissions rankings
 - o Third-party data verification
- PowerScore Comply in select jurisdictions
- Access PowerScore Pro as an RII member
 - Enhanced portfolio management
 - Dashboard reports
 - Filters
 - Access Ranked Data Set.

Competitive business insights

- Get ahead of compliance
- Assess portfolios of facilities to continuously improve
- Prioritize capital projects
- Forecast KPIs for new facilities and retrofits

Informing Audiences with Peer-Reviewed Publications


Best Practices Guides for Producers

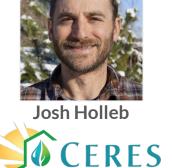
Primers for Governments & Utilities

Collaborative Reports on Resource Usage

Intelligence Insights for Members

Today's Speakers

Gretchen Schimelpfenig


Kyle Edmiston

Karl Johnson

3C-REN: Tri-County Regional Energy Network

Three counties working together to improve energy efficiency in the region with free programs:

- Building professionals
- Makes the Energy Code easy to follow
- Building Performance Training
 - Current and prospective building professionals
 - Helps workers thrive in an evolving industry
- Home Energy Savings
 - Homeowners and renters
 - Improves home comfort and safety
- Upcoming Courses

TRI-COUNTY REGIONAL ENERGY NETWORK

SAN LUIS OBISPO · SANTA BARBARA · VENTURA

Purpose of Today's Workshop

Help cannabis producers improve the efficiency of their operations with environmental control systems

Convey scientific insights directly to producers and finding the best ways to translate them in the context of a local ecosystem

Help government agencies and energy efficiency programs achieve their climate goals through knowledge sharing

Encourage cultivators to take advantage of 3C-REN resources to support compliance with County energy conservation plans

TRI-COUNTY REGIONAL ENERGY NETWORK

SAN LUIS OBISPO · SANTA BARBARA · VENTURA

Access Your Tri-County Virtual Classroom

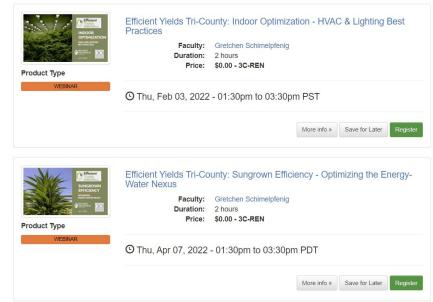
Access the virtual classroom to continue learning

Free guidance on efficient cannabis cultivation

All live workshops are available for on-demand viewing!

- Recordings of live workshops
- Tip Clips
- Downloadable resources
- 3C-REN tools

Create an account at ResourceInnovation.org/Tri-County


Register for the Workshop Series

Access the virtual classroom to continue learning

Free guidance on efficient cannabis cultivation

All live workshops are available for on-demand viewing!

- Feb 3, 2022
 - Indoor Optimization HVAC & Lighting Best Practices
- Apr 7, 2022
 - Sungrown Efficiency Optimizing the Energy-Water Nexus

INDOOR OPTIMIZATION

HVAC AND LIGHTING BEST PRACTICES

Feb. 3, 2022

SUNGROWN EFFICIENCY

OPTIMIZING ENERGY-WATER NEXUS

Apr. 7, 2022

Managing Energy with Controls

Sources of Energy Use

Cultivation operations may use:

Electricity

- Electricity for horticultural lighting
- Electricity for HVAC processes
- Electricity for motors:
 - Pumping water
 - Actuating greenhouse vents
 - Running fans

Fuel (natural gas, propane)

- Fuel for heating processes
- Fuel for combined heat and power (CHP)

Download the Controls Best Practices Guide

Brand-agnostic information for producers

Free guidance on lighting, HVAC, and water controls

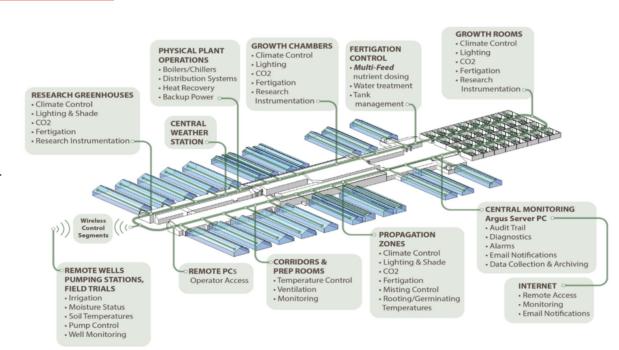
- Speak the language relevant to controlling and automating environmental control systems in horticultural applications
- Understand types of control systems optimizing horticultural environments
- Plan for integrated controls approaches in greenhouses and indoor operations
- Install and operating successful controls solutions in alignment with business models
- Use data from control systems to improve productivity and efficiency
- Demonstrate energy savings for utility energy efficiency incentive programs

DOWNLOAD NOW

Start Your Journey to Automation

Design Conditions vs. Target Conditions

- Optimize for producing for the entire year
 - Consistent yields
 - Verifiable results


Controls Considerations

- Wired vs wireless control systems
- Sensor placement
- Point of control
- Resolution & accuracy
- Integration
- Maintenance & end of life planning

Fully Integrated Controls

- Feedback
 - Reacting to a change
- Feed forward (integrated)
 - Acting preemptively and predictively
- Integration benefits
 - Reduce wear and tear
 - Improve control
 - Save energy
 - Save water
 - Real time data for troubleshooting

Benefits of Commissioning

Ensure Mission-Critical Systems Perform Optimally

- Improve maintenance procedures
- Save staff time
- Reduce operations & maintenance expenses
- Save energy: 3% and 12% for industrial facilities
- Verify systems respond as expected
- Validate resource efficiency
- Resolve problems before product at risk
- Avoid expensive fixes requiring shutdowns in operation

Reduce Expenses by Commissioning Your Cannabis Facility

READ MORE

Design-Phase Commissioning

Third-Party Review of Project Design Docs

- Review Owner's Project Requirements (OPR) including target setpoints, standard operating procedures, failure conditions
- Assist design team with creating Basis of Design (BOD)
- Develop a commissioning plan
- Perform design review of drawings
- Review equipment submittals
- Identify issues & suggest adjustments

Design-Phase Commissioning

Early Engagement to Plan Controls

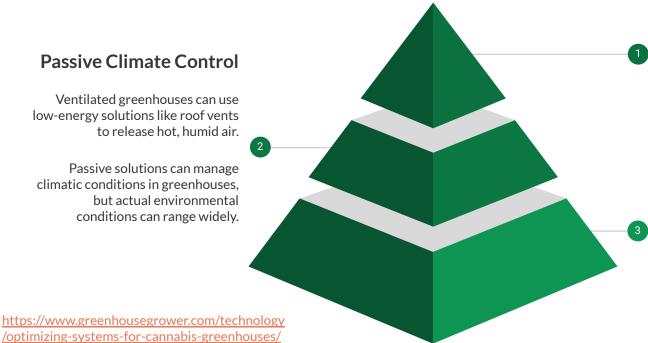
- Design for annual production
 - All seasons and consistent production
- Analyze supplemental lighting needs
- Understand interactive effects on systems:
 - Power
 - HVAC and humidity management
 - Water
- Plan your controls system responses to conditions outside of target ranges

	Average Daily DLI	Delivered Avg DLI	Required DLI
Month	Hagerstown, MD		
January	14.6	10.22	36.78
February	20.6	14.42	32.58
March	28.7	20.09	26.91
April	35.4	24.78	22.22
May	41.4	28.98	18.02
June	44.1	30.87	16.13
July	43.5	30.45	16.55
August	39.1	27.37	19.63
September	31.2	21.84	25.16
October	23.2	16.24	30.76
November	16.1	11.27	35.73
December	13.2	9.24	37.76

Construction-Phase Commissioning

Performance Testing to Validate Controls

- Multistage process involving several project team members:
 - Construction manager
 - Controls contractor
 - Commissioning agent
- Create prefunctional checklists and functional performance tests and work with controls contractors to witness and record all functional tests
- Identify issues in the field and issue reports recommending resolutions
- Create staff training agendas
- Produce a final commissioning report
- Ensure that Contractors have provided operations and maintenance (O&M) manuals



Greenhouse Climate Control Approaches

Passive Climate Control

Ventilated greenhouses can use low-energy solutions like roof vents to release hot, humid air.

Passive solutions can manage climatic conditions in greenhouses, but actual environmental conditions can range widely.

Active Climate Control

Ventilated greenhouses can be actively ventilated using ventilation fans to cool and dehumidify growing spaces.

Well-sealed greenhouses can achieve target environmental conditions by using fans, evaporative cooling walls, refrigerant-based cooling and dehumidification equipment, and mechanical heating systems.

Greenhouse Envelope

Ventilated greenhouses use plastic or glass coverings which are hard to completely seal.

Greenhouses with insulated and tightly sealed envelopes can more actively control climate and achieve target environmental conditions.

Different Greenhouse Techniques

Ventilated Greenhouses

- Can utilize building envelope for HVAC & dehumidification
- Can use ventilation to control temperature and humidity
- Might use mechanical climate control equipment

Sealed Greenhouses

- Hybrid building envelope of opaque and transparent walls
- Well-insulated and tightly sealed envelope
- Must use mechanical climate control equipment

Greenhouse Envelope Standards

- *Opaque* walls and opaque roof assemblies must meet the existing mandatory insulation requirements in Section 120.7.
- Non-opaque wall assemblies must have a combined U-factor of 0.7 or less
- Non-opaque roof assemblies must have a combined U-factor of 0.7 or less
- Exempts greenhouses from existing prescriptive building envelope requirements for window wall ratio, skylight roof ratio, and daylighting requirements for large enclosed spaces
- Applies to:
 - Newly constructed greenhouses and to greenhouses being converted from unconditioned to conditioned
 - Additions to conditioned greenhouses

Insulation

- Greenhouse buildings are constructed in many different ways, and to describe them, it is useful to understand some building system terms.
- Thermal envelopes are sometimes referred to as a building's skin, or shell; you can think of them like your greenhouse's coat in the winter and sunscreen in the summer. Weatherization describes activities you can do to improve thermal envelopes.
- Weatherization activities include insulating, which minimize unwanted heat losses and gains, and air sealing, which reduces the infiltration of outside air.
- Insulation is rated using R-value (a higher value is better) or the U-value (the inverse of R-value, where a lower value is better).

Greenhouse Envelope Performance

Greenhouse Coverings

- Popular covering types include rigid plastic, film plastic, and glass
- Each can vary in cost, durability, light transmission, and insulation
- Insulative qualities depend on the type and the thickness
- Rigid plastic products like polycarbonate, acrylic, and fiberglass are popular as they can feature multiple layers of walls which trap air for lower U-value
 - Single wall polycarbonate will not comply
- Film plastic is attractive due to its low cost, but provides no insulation
 - Will not comply without double layers of film and an air gap
- Glass has varying insulation ratings
 - Single pane will not comply

CALIFORNIA ENERGY CODES & STANDARDS A STATEWIDE UTILITY PROGRAM

Read the <u>Final</u> <u>CASE Report</u>

Insulative Qualities of Coverings

Covering Type	U-Factor	Cost / Square Foot (\$USD/sf)	Useful Life (Years)
Polycarbonate, Five Wall, 25 mm	0.31	\$8.00	10 -15
Polycarbonate, Triple Wall, 8 mm	0.50	\$4.00	10 -15
Double-Pane Storm Windows	0.50	\$6.00	25+
Polyethylene film, Double, with IR	0.50	\$0.25	3-4
Polycarbonate, Double Wall, 10 mm	0.53	\$2.50	15
Acrylic, Double	0.56	\$2.66	30+
Polycarbonate, Double Wall, 6 mm	0.65	\$1.54	10 -15
Polycarbonate, Double Wall, 4 mm	0.70	\$1.50	10 -15
Glass, Double Pane	0.70	\$6.00	25+
Polyethylene film, Double	0.70	\$0.18	3 -4

Greenhouse Envelope Performance

Sealed Greenhouses

Finely Tuned Environmental Conditions

- Sealed greenhouses are more capable of achieving target environmental conditions because they are less sensitive to ambient conditions due to less outdoor air infiltration and have better thermal performance than ventilated greenhouses.
- Cultivars in traditional greenhouses experience wide temperature variation across cultivation spaces:
 - +/- 10 degrees F variance from target
 temperatures and +/- 10% from the target RH
 - +/- 7 degrees F temperature differences between the intake and fan (exhaust) ends of the same greenhouse bay

TIP CLIP:

Building Envelope: Sealing & Insulating

With Josh Holleb Ceres Greenhouse Solutions

External & Internal Equipment

External Building Envelope: Vents

- Materials selection has huge impact on building performance
 - Finding the best ratio of insulation to glazing
- Natural ventilation to allow heat to escape and fresh air inside

Internal Building Envelope: Thermal Curtains

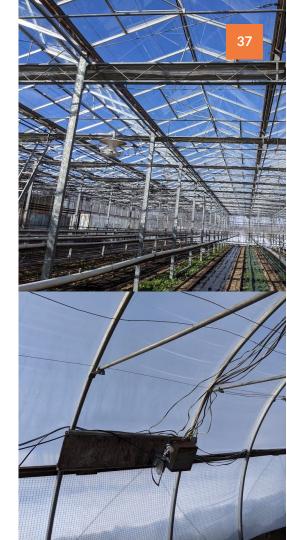
• Insulation and management of solar conditions

Fans

• Active ventilation & circulation to optimize airflow

Cooling & Heating

Active processes to reduce or increase temperature


External Building Envelope: Vents

Ridge Vents

- Hot air inside the greenhouse escapes through roof opening
- Manually operated or automatically controlled

Side Wall Curtains

- Rigid plastic rolled up via crank, or opens from the top and drops down
- Manually operated

External Building Envelope: Vents

Side Wall Vents

- Rigid vents operated via rack and pinion systems
- Covered with rigid or film plastic for longer life
- 2 3X more expensive than side wall curtains
- Provide a much tighter seal to hold in heat
- Manually operated or automated

Shade and Thermal Curtains

Climate Curtains

- Some curtains both shade and insulate, some do one or the other
 - Open-weave curtains may not insulate
 - Transparent thermal curtains may not shade
- Screens can:
 - Manage solar radiation
 - Reduce heat loss at night and in colder months
 - Protect plants on sunny and hot days
 - Save energy on both heating and cooling
 - Reduce utility bills
- Manually operated or automatically controlled

Right Climate for Growth

The Right Climate for Growth

A better climate for every crop

Light

Temperature

Energy

Optimizing these factors is key to achieving growing goals.

Figure credit: Ludvig Svensson

TIP CLIP:

Shading Devices

With Kyle Edmiston Svensson

Different Screens for Different Goals

Figure credit: Ludvig Svensson

Diffusion: Even Temperature & Lighting

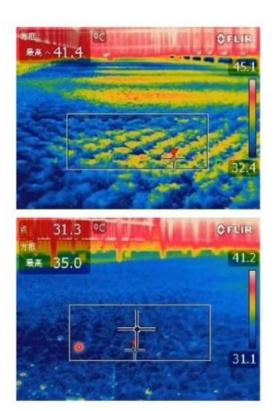


Figure credit: Ludvig Svensson

Other Light Deprivation Considerations

Light Traps

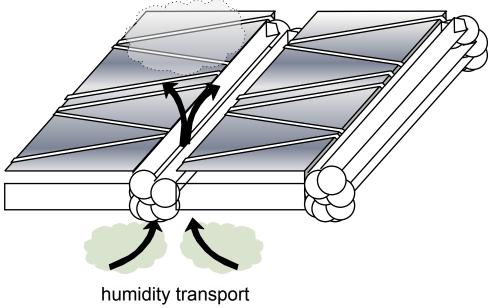


Figure credit: Ludvig Svensson

Rollup Screens & Side Walls

Moisture Management in Screens

- Reduces risk of diseases
 - Powdery mildew
- Gray mold
 - Other fungal diseases
- Helps prevent humidity level extremes and condensation formation on the screen
- Humidity control is vital during flowering

via yarns

Southern California Energy Savings from Curtains

ANNUAL SUMMARY			
Scenario names	No screen	Blackout only	Blackout & Energy Screen
Screen 1	-	BSCURA_10070_FR_WB+B\	BSCURA_10070_FR_WB+B
Screen 2	-	-	HARMONY_2047_FR
Screen 3	-	-	-
Vertical 1	•	OBSCURA_10070_R_FR_W	OBSCURA_10070_R_FR_W
Vertical 2	•	-	-
Energy consumpt. (m3 gas)	575 480	489 455	339 601
m3 gas/m²	58.13	49.44	34.30
Energy expenditure	374 062	318 145	220 741
US Dollars/m ²	37.8	32.1	22.3
Energy saving (%)	-	15%	41%
Investment	-	148 500	188 100
US Dollars/m ²	-	15.00	19.00
Return on investment (year)	-	2.7	1.2

Figure credit: Ludvig Svensson

Diffusion: Even Temperature & Lighting

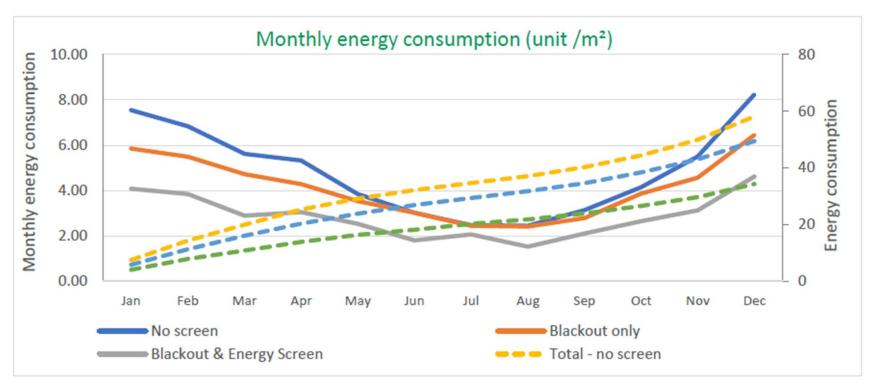
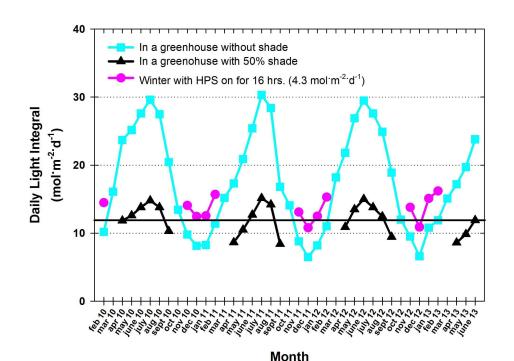
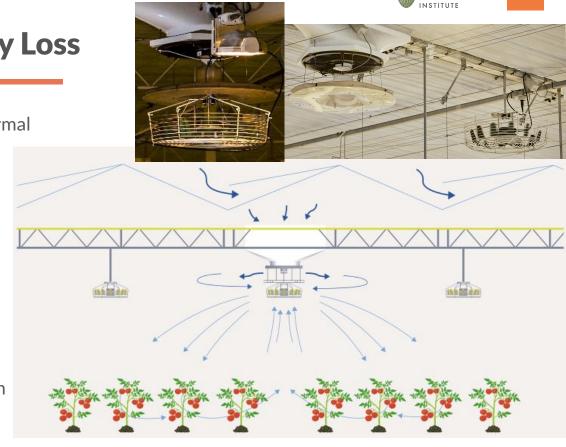
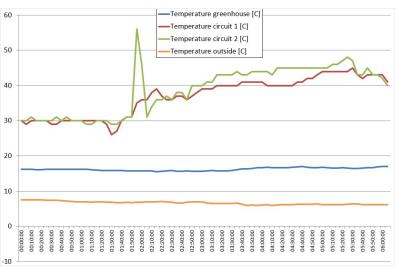



Figure credit: Ludvig Svensson

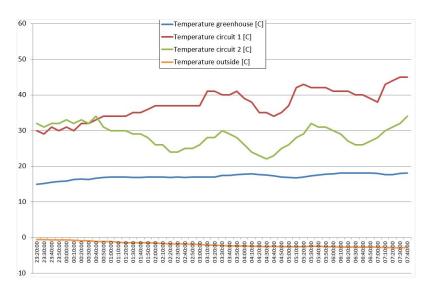
Shade Curtains to Maintain DLI Targets



R.G. Lopez, 2013

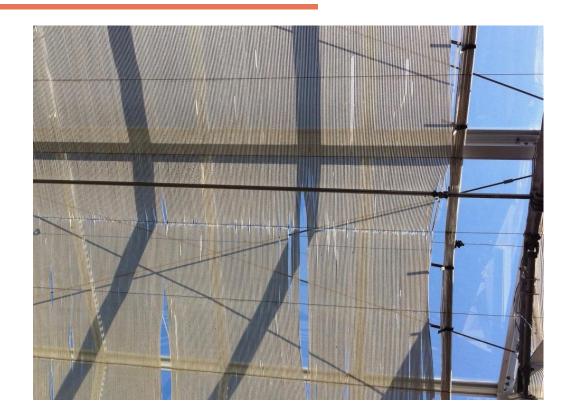

Blackout Screens: Energy Loss

 Heat, humidity can build up under normal blackout screens increased by:


- Supplemental lights
- Pipe temperature
- Climate
- Common Solution: Gapping Screens
- Common Issues:
 - Difficult to manage
 - Light abatement regulations becoming common
- Solution: Active dehumidification with vertical air movement

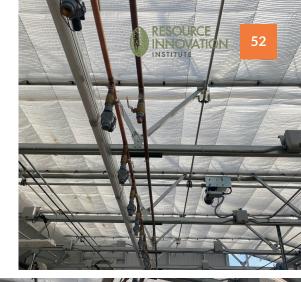
Vertical Air Movement Energy Savings Potential

Screen in open position



Screen in **closed** position

Figure credit: Ludvig Svensson


Increase Fabric Longevity with Programming

Envelope/Shade/Thermal Curtain In Warm Climate Field Example

New Mexico Project

- 5725 ft elevation
- Opaque insulated E/W/N walls and N roof
- Shade curtain with 36% shade and 47% heat retention
- "It was 20 degrees last night and with no heat at all it didn't drop below 65 degrees in the greenhouse overnight"

Dive Deeper into Greenhouse Controls

The Carbon Emission Impacts of Greenhouse Cannabis Cultivation

CANNABIS

READ MORE

Optimizing Systems for Cannabis Greenhouses

GREENHOUSE GROWER ** **

READ MORE

Articles co-authored by RII with members of our Technical Advisory Council Working Groups

Lighting Controls: Value Proposition

Dial in the number one nutrient for plants

Provide with granularity:

- Proper light levels
- Optimal spectra for cultivars
- Preferred photoperiod by stage of development
- Desired DLI to empower plant growth

Provide plants with the exact intensity and quantity of light while minimizing energy consumption and lowering bills

TIP CLIP:

Greenhouse Lighting
Controls & Automation
Best Practices: LED

With Colin Brice Signify

Read the Final CASE Report

A STATEWIDE UTILITY PROGRAM

Greenhouse Growing, Horticultural Lighting

In a building with CEH spaces and with more than 40 kW of aggregate horticultural lighting load, the electric lighting systems used for plant growth and plant maintenance shall meet the following requirements:

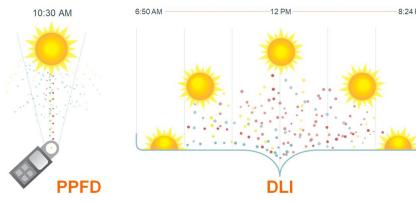
- Luminaires shall have a photosynthetic photon efficacy of at least
 1.7 micromoles per joule rated in accordance with ANSI / ASABE
 S640 for wavelengths from 400 to 700 nanometers.
- 2. Time-switch lighting controls shall be installed and comply with Section 110.9(b)1, Section 130.4(a)4, and applicable sections of NA7.6.2.
- 3. Multilevel lighting controls shall be installed and comply with Section 130.1(b).

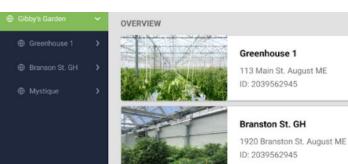
Designing Lighting Controls Systems

Planning Lighting Controls

- Facility location
- Crop being grown
- Growing seasons
- Cost vs. performance
- Perpetual harvest
- Maximizing production
- Balancing efficiency

Provide plants with the exact intensity and quantity of light while minimizing energy consumption and lowering bills

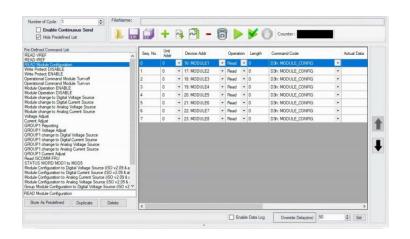

Specify Control Parameters


Target Ranges for Best Outcomes for Plants

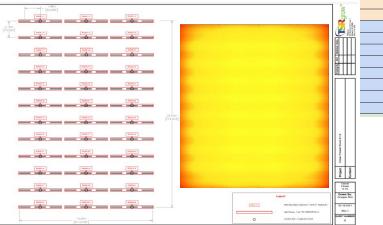
- **PPFD**
- DLI

Determine the information sensors will use to modulate equipment output to meet thresholds

PPFD vs. DLI



Designing Lighting Controls


Power and Light Planning

- Pre-install design, mapping, PPFD
- Configuration vs commissioning
- Post-install verification

Fixture Layout

Flower House	9							
				Junction	Junction			
			Modu	Boxes/Modul	Box/Module	TG-1000HVR	TG-1000HVR	Power/Mo
	Cabinet	TGHV#	les#	e	Code	Fixtures/module	Power/Fixtures (W)	dule (W)
Itemized	RA01	1	1	1	RA01,1-1	3	1000	3000
			2	1	RA01,1-2	3	1000	3000
			3	1	RA01,1-3	3	1000	3000
			4	1	RA01,1-4	3	1000	3000
			5	1	RA01,1-5	3	1000	3000
			6	1	RA01.1-6	3	1000	3000
					,	3	1000	3000

Lighting Controls: Recipes for Cannabis Steering

Gather data to support lighting controls incentives

Table 4: Lighting Controls for Cannabis Steering by Stage of Plant Growth⁶

Lighting Controls	Vegetative	Flowering	Ranges of Controls Values
PPFD	Lower	Higher	300 - 1500+ μmols/m²/s
DLI	Less	More	20 - 42 moles/m²/day
Spectral Treatments (R:B ratio)	Higher	Lower	7 - 15%; higher blue for shorter plants
Far Red Treatments	More	Less	Used to manage shade avoidance

Systems to Control: Lighting

Sensors and their integration

- New construction or existing
- Wireless vs. wired
- Determine zones
- Controlling vs monitoring
- Key points to monitor

Lighting Controls Strategies

Scheduling

Adjust photoperiod

Dimming

- Modulate light intensity by zone of control
 - Daily
 - By stage of plant growth

Spectral Tuning

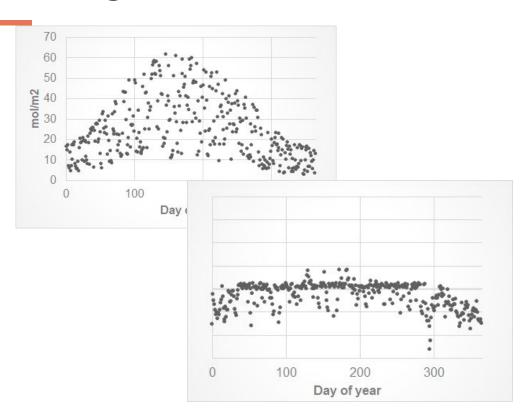
Modulate photon output from wavelength ranges

Understand energy savings potential of strategies and data needed to validate performance

Table 3: Lighting Controls Parameters Measured by Cannabis Cultivators

Lighting Data Collected ⁵	Percentage of Growers Collecting, 2020	
Light intensity (PPFD)	55%	
Spectral quality	33%	

Credit: Cannabis Business Times (top, figure data source), ERS (bottom)


Dimming Controls to Meet DLI Targets

Daylighting Controls for Greenhouses

- Dimming
 - Thresholds
 - Response rates

Maintain light levels to the canopy

Avoid under-lighting or over-lighting

Energy Savings from DLI Controls

Academic greenhouse bserved 30% energy savings from using controllers to operate lights off sunlight intensity compared to operating off timers



Figure credit: Rob Eddy

Feed-Forward Controls for Lighting

Lighting Benefits from Predictive Controls

- Predictive controls and cost-effectiveness
 - Weather
 - Peak demand
 - Shade control integration
 - Photoperiods
 - o DLI

Map Your Controls and Responses

- Zones
- Dimming
- Response rates
- Ambient conditions and interactive effects

Commissioning Lighting Controls

Advanced Lighting Systems

- Verification of installation
- Remote monitoring
- Integrated startup and commissioning
- Reporting and metrics and verification

Target Setpoints

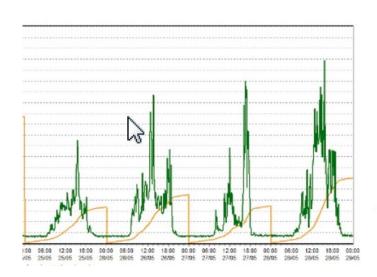

- Zones
- Ranges
- Choosing control values
- Set points that are sustainable year round

Figure credit: TSRgrow

Tweaking Lighting Response Rates

Applying a data filter to light sensors reducing cycling of equipment

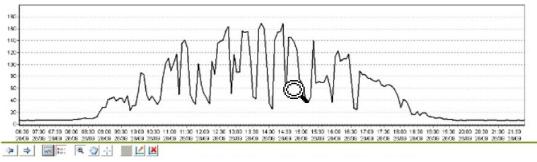


Figure credit: Rob Eddy

Lighting and Environmental Controls

Lighting Interactive Effects

- Ambient conditions can affect demand for lighting (schedule and intensity)
 - Greenhouses have dynamic temperature, humidity, CO₂

Systems Affected by Lighting

- HVAC and humidity management
- Fertigation
- Curtain controls

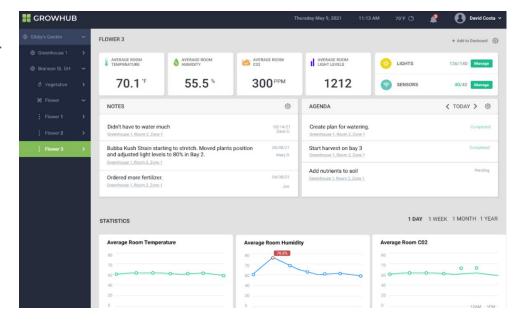


Figure credit: TSRgrow

Dive Deeper into Lighting Controls

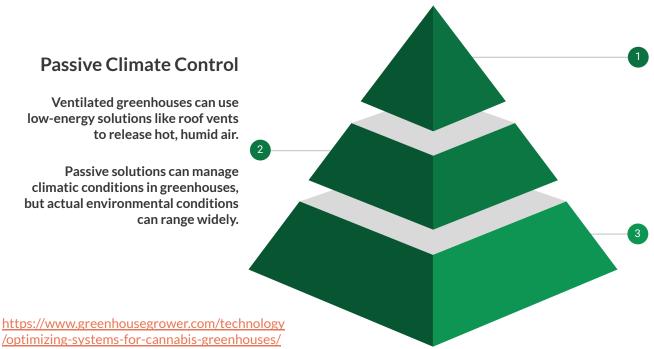
The Right Light

CANNABIS

BUSINESS TIMES

READ MORE

Articles co-authored by RII with members of our Technical Advisory Council Working Groups



Greenhouse Climate Control Approaches

Passive Climate Control

Ventilated greenhouses can use low-energy solutions like roof vents to release hot, humid air.

Passive solutions can manage climatic conditions in greenhouses, but actual environmental conditions can range widely.

Active Climate Control

Ventilated greenhouses can be actively ventilated using ventilation fans to cool and dehumidify growing spaces.

Well-sealed greenhouses can achieve target environmental conditions by using fans, evaporative cooling walls, refrigerant-based cooling and dehumidification equipment, and mechanical heating systems.

Greenhouse Envelope

Ventilated greenhouses use plastic or glass coverings which are hard to completely seal.

Greenhouses with insulated and tightly sealed envelopes can more actively control climate and achieve target environmental conditions.

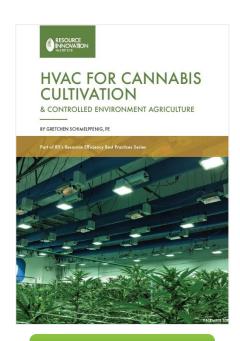
HVAC Controls: Value Proposition

Optimize environmental conditions for plants

- Proper temperature (space, relative & leaf), humidity, airflow, CO2 levels
- Optimal plant growth, control mold, mildew and other pests
- ROI plus visibility of data to create a more stable operation

Reduce operating costs while maximizing efficiency and productivity

HVACD for Controlled Environment Agriculture


Demystifying Key Terms

- Cultivation
- Energy & Power
- Environmental Conditions
- General HVAC
- Energy Efficiency
- Construction
- Cultivation Key Performance Indicators (KPIs)

Key Concepts

Understand HVAC options

Learn tips for optimizing design, installing equipment, and operating HVAC systems effectively

DOWNLOAD NOW

HVAC Controls: Recipes for Cannabis Steering

Table 7: Climate & Airflow Controls for Cannabis Steering by Stage of Plant Growth⁸

Climate Controls	Vegetative	Flowering	Ranges of Controls Values
Day-Night Temperature Difference	Smaller	Larger	0 - 9 degrees F
Afternoon Temperature Increase	None or small	Larger	0 - 5.5 degrees F
Start Time for Heating System	Earlier	Later	4 hours before sunrise to sunrise
Night-Day Temperature Increase	Higher	Lower	1 - 4.5 degrees F
Start Time for Day-Night Temperature Decrease	Earlier	Later	2 hours before to 2 hours after sunset
Speed of Day - Night Temperature Decrease	Slower	Faster	0 - 7 degrees F per hour
Average Daily Setpoint Temperature	Lower	Higher	68 - 82 degrees F
Vapor Pressure Deficit Target	Lower	Higher	0.8 - 1.5 kPa
Ventilation for Temperature Control	More	Less	Used for temperature control
CO ₂ Enrichment	More	Less	350 - 1500 ppm
Energy Screen	Close	Open	Used to manage plant stress

Figure data source: Signify

Greenhouse HVAC Controls

VPD Controls

- Target ranges vary by stage of plant growth
- Dial in energy-efficient VPD setpoint ranges

Airflow Controls

- Sizing for cultivation can range from 10 to 20 ACH, with some cases as high as 30 - 40 ACH
- Reduce supply air volume setpoint during dark periods

Understand energy savings potential of strategies and data needed to validate performance

Table 5: Climate and Airflow Controls Parameters
Measured by Cannabis Cultivators

Climate and Airflow Data Collected ⁷	Percentage of Growers Collecting, 2020
Space Temperature	85%
Relative humidity	72%
CO2 concentration	66%
Leaf temperature	31%
Air speed	19%

Table 6: VPD Targets for Cannabis Cultivation

Cannabis Growth Stage	Target VPD Range (kPa)
Flower/Bloom/Mother	1.0 - 1.5
Vegetative	0.8 - 1.1
Clone/Seedling	0 - 0.2

Figure data source: Cannabis Business Times

Traditional Greenhouse HVAC Systems

Figure credit: Gretchen Schimelpfenig, University of Vermont

High-Performance Greenhouse HVAC Systems

Figure credit: Ceres Greenhouse Solutions

High-Performance HVAC System Data

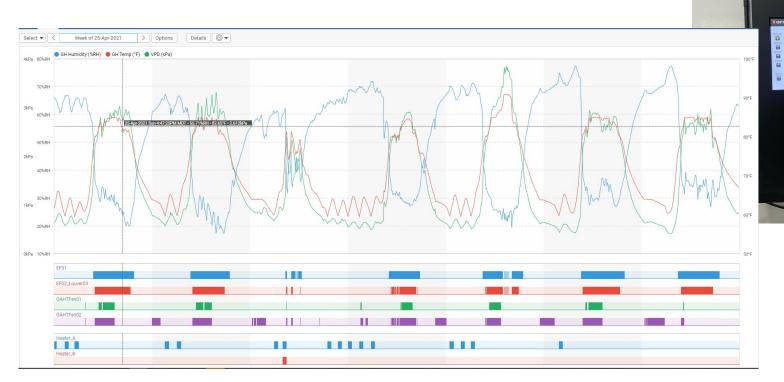


Figure credit: Ceres Greenhouse Solutions

High-Performance HVAC System Data

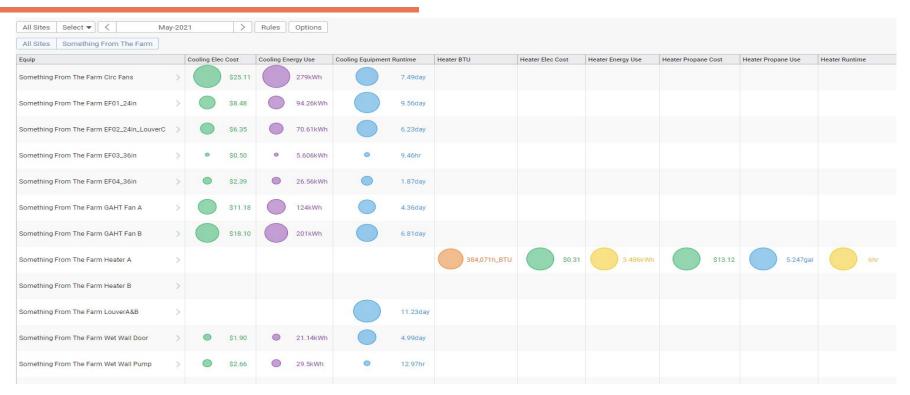


Figure credit: Ceres Greenhouse Solutions

Mechanical Cooling Equipment

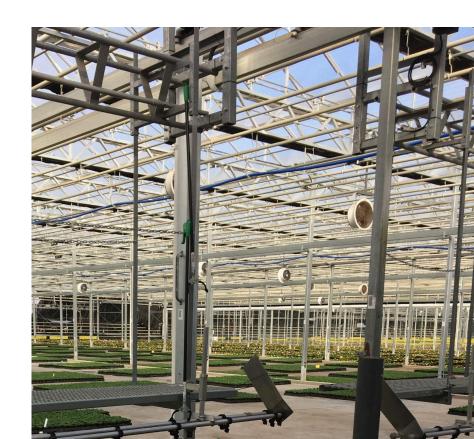
Cooling

- Cooling equipment to maintain target environmental setpoints
 - Evaporative systems:
 - Pads and fans (P&F)
 - High-pressure fog (HPF)
 - Refrigerant-based cooling systems
 - Direct expansion (DX)
 - Heat pump equipment
- Often automatically controlled
 - Can be staged on after passive ventilation strategies

Mechanical Heating Equipment

Heating

- Radiant systems to maintain target environmental setpoints
 - Associated pumps
- Unit heaters
- Heat pump equipment
- Sizing heating equipment for CEA
 - Winter / night conditions
 - Depend on cultivar
 - Affected by supplemental lighting
 - Determine design conditions for winter / night
- Temperature controls for hydronic and ducted systems

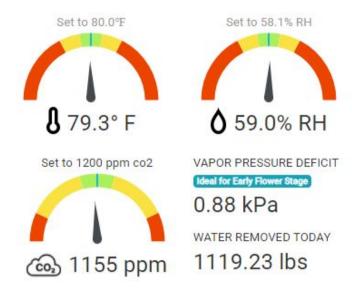

Climate & Airflow Controls

Climate & Airflow

- Mapping your facility
- Use the environment to your advantage
 - Consider advanced in-ground designs for heat capture/re-use/recirculation and cooling

Monitor and Measure to Control

- Sensors throughout facility
 - At all levels and in the ground
- Feed-forward predictive control
 - Reacts to environmental influences before they are reported by sensors

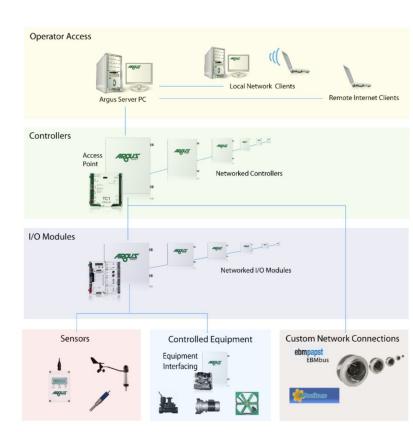


HVAC Controls: Interactive Effects

Respond to light and water

- Orchestrate your envelope HVAC controls to call and respond to daily and seasonal solar variation and your supplemental lighting controls
- When the sun sets, humidity spikes, and control strategies give envelope and HVAC equipment more time to ramp up and respond
- Likewise, plant stage of growth and timing of watering events can demand more of your HVAC system

HVAC equipment should monitor both lighting and irrigation controls activities for faster response times and happier plants



Integrated Greenhouse Controls

Intelligent Cooling with Feed-Forward Controls

- Feedback alone can cause poor control and wasted energy
- Using feed-forward integrated controls, HVAC controls can preemptively anticipate weather conditions to improve control and save energy.
- Hardware communicates with software to inform systems of actual conditions in the greenhouse
- Environmental controls orchestrate which system should respond:
 - Vents, curtains, fans, active cooling

HVAC Controls: VPD Controls

Maintain efficient VPD targets

- There is not a target VPD that is appropriate for all cultivars, environments, or cultivation methods
- Consider acceptable VPD ranges by stage of plant growth

Dial in HVAC system automation to tailor VPD to specific cultivars, systems, and facility configurations

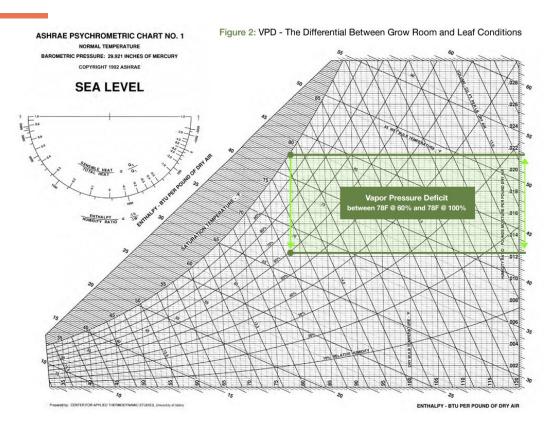


Figure credit: Desert Aire & ASHRAE

Maintaining Airflow

Ventilation & Circulation Fans

- Using both leeside and windside vents can allow for smaller openings
 - Leeside to reduce temperatures and remove excess humidity
 - Wind side vents can create greater air movement above thermal curtains
- Size ventilation fans properly for your airflow requirements:
 - For hot season growing use 8 CFM per square foot of growing space
 - For cooler season growing use 2 CFM per square foot
- Install circulation fans to satisfy flow rates of 25% of your greenhouse's volume per minute

Plant Empowerment Concepts for Cannabis

- 1. Control radiation with thermal curtains
 - a. Close energy screens to limit heat emission from plants at night
 - b. Open energy screens later in AM and close earlier in PM
- 2. Determine what equipment serves what purpose
 - a. Circulate and ventilate to actively maintain airflow
 - b. Improve humidity control with HVACD equipment
- 3. Document target environmental conditions
 - a. Select targets to maintain plant balances
- 4. Operate HVAC equipment to maintain a uniform climate
 - a. Stage equipment to achieve target environmental conditions
- 5. Monitor VPD, lighting system operation, and energy flows
- 6. Base irrigation on total energy flows and VPD monitoring

Commissioning Environmental Controls

Monitoring

- You can't manage what you don't measure...but you can't measure what you don't monitor
- Make data to support savings claims

Calibration

- Ensure sensor accuracy so HVAC systems respond to actual environmental conditions
- Configure response times to reduce short-cycling

Commissioning

Functionally test HVAC sequences of operation to ensure persistent energy savings

Figure credit: Gro iQ / InfiSense

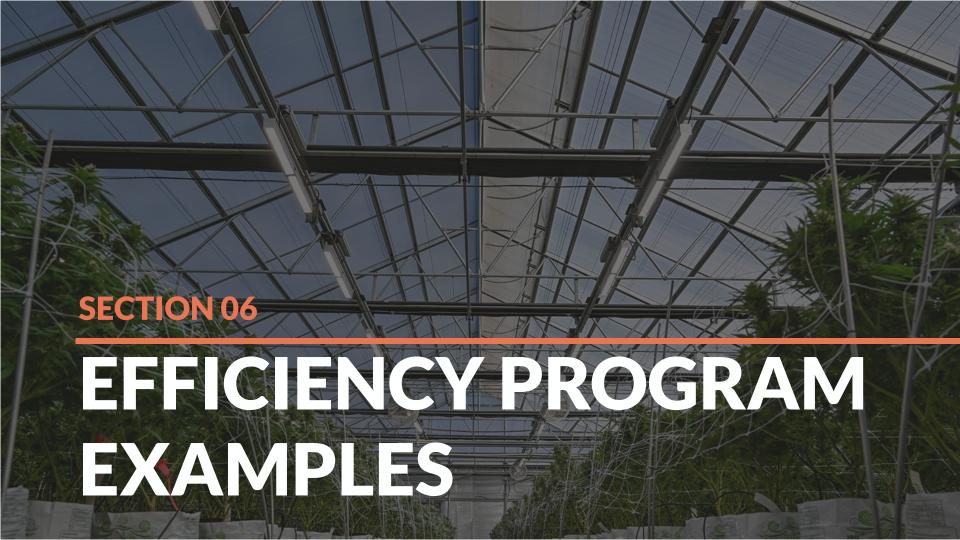
Dive Deeper into Environmental Controls

Empowering Plants with Environmental Controls Systems

GREENHOUSE GROWER

READ MORE

Avoiding Cannabis Crop
Loss in Cultivation


GREENHOUSE GROWER & S

READ MORE

Integrated Pest
Management for
Cannabis Cultivation
Monitoring, Identifying,
Preventing, and
Controlling Pests with
HVAC Solutions
Cannabis

READ MORE

Articles co-authored by RII with members of our Technical Advisory Council Working Groups

Efficiency Utilities Serving Tri-County

Three Regional Utilities with Efficiency Programs

- Utility service territories determine eligibility
- Growers in Tri-County region can benefit from technical assistance and financial incentives
- Incentives reduce the first cost of high-performance technology

Cannabis Efficiency Project Landscape

Read customer testimonials at

https://www.socalgas.com/for-your-business/energy-savings/rebate-and-incentive-testimonials

SoCalGas Programs for Producers

Energy Efficiency Programs

- Agriculture Energy Efficiency Program (AgEE)
 - New program implemented by ICF, EnSave, and ERI Pacific
 - Financial incentives of up to 50% of the project cost
 - Projects must be installed by the end of 2023
 - Incentives for some projects are available back to June 7th, 2021
 - SoCalGas customers can contact Karl from EnSave at <u>karli@ensave.com</u>
 - Send general program emails to <u>AgEE@CAEnergyPrograms.com</u>
 - o Call 844-523-9981

Visit https://caenergyprograms.com/AgEE

RESOURCE INNOVATION

SoCalGas Greenhouse Customer Incentive Examples

Project 1:

Sunnyland Nurseries - Greenhouse

Energy management system

- Saves energy by monitoring climatic changes and automatically adjusting setpoints inside greenhouse
- "Does a better job than I did," notes owner Robert Akashi

Energy Saving Results

4,800 therms per year Incentives \$3,850

Project 2:

Skyline Flowers - Greenhouse

Infrared film

- Saves energy by reducing thermal cooling at night
- "If you're aware of the program and know what it offers, the rebates can be substantial for agriculture businesses"

Energy Saving Results

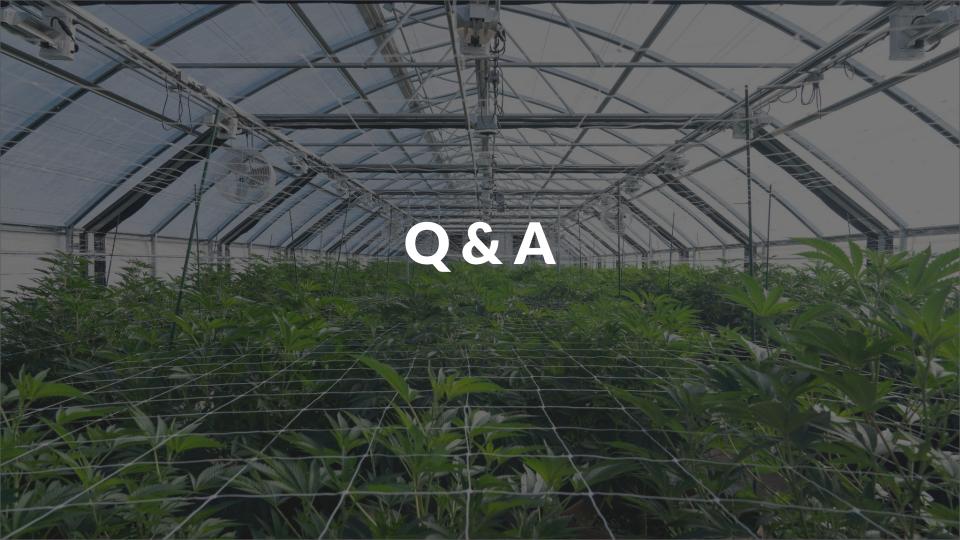
20,000 therms per year Incentive \$25,000

SoCalGas AgEE Program Offerings for CEA Customers

Energy Efficient Equipment Incentives

Heat curtains / energy screens: \$0.35 - \$0.50 per sq. ft.
Infrared (IR) film: \$0.045 - \$0.10 per sq. ft.

Condensing boilers: \$6.00 - \$10.00 per rated kBtu capacity


• Pipe insulation: \$2.50 - \$4.00 per linear foot

Custom projects: \$2.50 - \$3.00 per first-year therm saved

Other Program Offerings

- Free technical assistance to identify and prioritize greenhouse energy efficiency projects
- Energy audits and facility walkthroughs for large customers
- Direct installation of select measures at low/no cost for growers in disadvantaged communities
- Zero-percent on-bill financing up to \$100,000 per meter

All SoCalGas customers qualify for participation. Contact EnSave for more information!

Visit us at www.ResourceInnovation.org

P.O. Box 5981
Portland, Oregon 97228
derek@resourceinnovation.org
gretchen@resourceinnovation.org
carmen@resourceinnovation.org

